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Abstract—Routing architecture has a large impact on the
FPGA performance and area. In academia, the routing architec-
ture is mainly based on the connection blocks (CBs) and switch
blocks (SBs). There are also input crossbars inside the logic
blocks (LBs). Muxes with high fanins are used to implement the
intra- and inter-cluster connections. In the previous researches,
CBs, SBs and input crossbars are designed separately which may
miss some potential optimization spaces to trade off area, delay
and routability. Besides, it is hard to model the complex routing
architecture in commercial FPGAs. In this paper, we propose
a novel tile-based routing architecture, versatile interconnection
block (VIB) which replaces the CBs, SBs and input crossbars
to alleviate this problem. All the routing resources are included
in the VIBs which are based on two level mux topology used
in many commercial FPGAs. Six parameters are proposed to
describe the VIB architecture. In addition, VTR 8 is enhanced
to support the proposed VIB architecture. Then, we compare
the proposed architecture with the latest work of two level
mux design. Experimental results show that the proposed VIB
architecture can achieve 18.9% improvement on the routing area,
2% improvement on the routability and 16.6% improvement on
the area-delay product with VTR benchmarks.

Index Terms—FPGA, routing architecture, tileable, route, VTR
enhancement

I. INTRODUCTION

FPGAs are widely used due to the fact that they have
superiority in time to market, non-recurring engineering (NRE)
cost and flexibility [1]. However, it needs more area, delay
and power when the circuits are implemented in the FPGAs.
Researches show that the routing architecture has a large
impact on the FPGA area and delay [2]. Besides, wire delay
has become a critical challenge with the process scaling [3].
Although wire distances shrink each generation, wire cross-
sectional area shrinks quadratically which leads to an increase
to wire delay.

The FPGA routing architecture includes the routing wires
and the programmable switches among them. The most com-
mon routing architecture in academia is mainly based on the
CBs and SBs which is also used in VTR 8 [4]. CBs are used
to connect wire segments with logic block (LB) pins while
SBs provide programmable switches to connect with different
wire segments. Many researches have been done to optimize
the routing architecture based on the CB-SB modeling, such
as the distributions of wire segment lengths [5], the flexibility
of CBs and SBs [1], architecture exploring methodology [6]
and so on.

However, CB-SB architecture is too restricted to describe
the complex routing architecture in commercial FPGAs. The
detailed routing architecture is generated by several abstract
parameters in VTR and only one level mux topology is
supported. In addition, the architecture is not tileable [7] and
two level mux topology [8] can not be realized in the VTR
CB-SB routing architecture. F4PGA is an open source solution
for HDL to bitstream FPGA synthesis targeting commercial
FPGAs [9] [10]. But only Xilinx 7-Series FPGAs which have
been over ten years are supported.

In this paper, we propose a tile-based VIB routing architec-
ture to narrow the gap between the academic and commercial
FPGAs and carry out a new architectural research. Our con-
tributions include:

• We propose a tile-based VIB routing architecture where
the basic tile is composed of an LB and a VIB. Tiles
communicate with each other through routing wires. Two
level mux topology is used in the VIB architecture.

• We define six parameters to explore the VIB architecture
and the FPGA architecture description file format is
extended to describe the complex routing architecture.
In order to evaluate the performance of the VIB archi-
tecture, we enhance the Routing Resource Graph (RRG)
generator and the packing algorithm in the latest VTR 8
[4].

• We evaluate the performance of the VIB architecture
whose area and delay parameters are extracted from
COFFE 2 [11] with VTR benchmarks [12]. Experimental
results show that the VIB architecture can achieve 18.9%
improvement on the routing area, 2% on the routability
and 16.6% on the area-delay product compared to the two
level mux architecture in [8].

The rest of this paper is organized as follows. Section II
introduces the academic CB-SB routing architecture and the
related work about FPGA routing architecture. Section III
proposes the VIB architecture and introduces six parameters to
describe the VIB architecture. Section IV gives the enhance-
ments in VTR 8 and COFFE 2 to support the proposed VIB
architecture. Section V presents the experimental methodology
and experimental results compared with the two level mux
architecture in [8]. Section VI concludes this paper with future
work.



II. BACKGROUND AND RELATED WORK

A. Routing Architecture of Island-Style FPGAs

Fig. 1 shows an example of island-style FPGA architecture
which mainly contains LBs, CBs and SBs. And they are
interconnected by vertical and horizontal routing wires. Fig. 2
is the detailed CB-SB routing architecture. The wire length L
means the number of LBs that the wire segment spans. The
routing channel width is described by W. The SB flexibility Fs

is the number of other wires connected by an incoming wire
inside the SBs. Input and output CB flexibility, Fc,in & Fc,out

mean the fraction of wire segments in the routing channels
that an LB input and output pin can connect to respectively.
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Fig. 1. Island-style FPGA architecture.
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Fig. 2. The detailed CB-SB routing architecture.

B. Related Work

In the traditional CB-SB architecture, global routing ar-
chitecture is composed of CBs and SBs. CBs are used to
connect wire segments to LB pins and SBs are used to connect
different wire segments. Besides, there are input crossbars in
LBs to connect LB pins or feedbacks to LUT pins. Generally,
these three components are designed separately in academic
researches. For example, many SB patterns have been designed
to improve the FPGA performance including Wilton [13],
Universal [14], Disjoint [15] and so on. G. Lemieux et al.
proposed an approach to generate the highly routable sparse
crossbars in CBs [16]. In [17], G. Lemieux et al. also designed
the sparse crossbars within LBs later. In addition, G. Zgheib
et al. evaluated the effect of the local interconnect density in
LBs on the FPGA performance and area [18].

W. Feng et al. proposed input interconnect blocks (IIBs)
which route signals from wires and LB feedbacks to LUT
inputs [19]. Experimental results show that IIB with two level
muxes can achieve great area savings with no routability
decreasing. K. Shi et al. proposed GIB architecture to replace
traditional CB-SB architecture [20] [21]. However, the LB
connections and the wire connections are designed separately,
which are represented by fc and fs respectively. In addition,
GIB architecture is not tileable. Tileable FPGA routing archi-
tecture has been proved that it can achieve better trade-off
in area, delay and routability than non-tileable FPGAs [7].
Qian et al. proposed tile-based GRB architecture to model
complex commercial FPGAs [22]. GRB is composed of three
relatively independent modules: GSB, ICB and OCB, and
the connections among them are restricted. In [8], Yu. Shen
et al. explored two level mux topology in FPGA routing
architecture, and experimental results show that it can achieve
great delay improvement with small area overhead. Two level
mux topology has been also used in the real commercial
FPGAs. In Intel Agilex FPGA, The LB input pins can select
the signals from LB output pins and wire segments through
two level muxes which are called LIM and LEIM respectively
[23]. In Xilinx FPGAs, two level muxes with different sizes
are also widely used and some inputs can act as fast inputs
from the global routing [24].

This paper is largely inspired by [7] [22] [8]. In this paper,
we present a tile-based VIB routing architecture to replace the
CBs, SBs and input crossbars. We design the two level mux
(L1-mux and L2-mux) topology in VIB architecture to trade
off the area and delay.

III. VIB ARCHITECTURE

In this section, the VIB routing architecture is introduced.
In addition, we design six parameters to describe the two level
mux topology.

A. VIB Architecture

Fig. 3 shows the proposed VIB routing architecture which
is tile-based. Each tile is composed of an LB and a VIB. Tiles
communicate with each other through wire segments. There
is no input crossbar inside the LB which is similar to the
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Xilinx FPGAs [25]. Inside the VIB, two level mux topology
is implemented as shown in Fig. 4. For convenience, all nodes
which go into the VIB are on the left side of the figure and
all nodes which leave the VIB are on the right side. The VIB
architecture is designed in groups which is described in detail
in Section III-B. The LB input muxes and the driving muxes
of wire segments can share the same fanins. For example, both
mux-3 and mux-4 can achieve connections from mux-0, mux-1
and mux-2 as shown in Fig. 4.

In the previous papers about exploring the two level mux
topology, the interconnections to the wires and the inter-
connections to the LB pins are designed separately. Such
as IB and SB in [8], ICB and GSB in [22]. There is no
communication between IBs (ICBs) and SBs (GSBs). It will
lose some design spaces about saving routing area and it may
lead to large FPGA routing area which has been proved [8].
Through the design method of two level mux topology in the
VIB architecture, it can save FPGA routing area.

TABLE I shows the ratio of source-sink pairs in multi-sink
nets to the total source-sink pairs in all nets. Experimental
results show that about 57.77% source-sink pairs are in multi-
sink nets. The implementation of multi-sink nets can achieve
great area savings in the VIB architecture as the router try to
re-use the wiring which has been used to connect the source
and the other sinks [26]. Fig. 5 (a) shows a routing path of
a two-sink net in the two level mux topology in [22]. ICB
and GSB are designed separately and the two level muxes in
ICB and the two level muxes in GSB have no communication.
Fig. 5 (b) shows a routing path of the same net in the proposed

TABLE I
PERCENTAGE OF SOURCE-SINK PAIRS IN MULTI-SINK NETS

Circuits source-sink
pairs

source-sink pairs
in multi-sink nets

Ratio

arm core 27766 21228 76.45%
bgm 59131 50135 84.79%

blob merge 13758 11777 85.60%
boundtop 268 38 14.18%

ch intrinsics 238 68 28.57%
diffeq1 1181 710 60.12%
diffeq2 842 612 72.68%

LU32PEEng 202449 167305 82.64%
LU8PEEng 53851 44107 81.91%

mcml 92524 71229 76.98%
mkDelayWorker32B 1327 271 20.42%

mkPktMerge 1017 95 9.34%
mkSMAdapter4B 2259 1530 67.73%

or1200 6746 5310 78.71%
raygentop 2553 1396 54.68%

sha 4743 3986 84.04%
stereovision0 9545 4001 41.92%
stereovision1 14738 5878 39.88%
stereovision2 47550 24767 52.09%
stereovision3 145 62 42.76%

Average 57.77%
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Fig. 5. One routing path example to compare the two level mux architecture
in [22] with the proposed VIB architecture.

VIB routing architecture. The LB input pins and wire segments
can have the same fanins. It can be seen that no additional
routing delay is added in the routing path. But the number of
routing muxes is decreased which leads to less routing area.
In addition, the routing resource utilization is also increased.

B. Modelling Parameters and The Enhanced Architecture De-
scription File

To model the VIB architecture, six parameters are defined as
shown in Fig. 6. We define Nf and Ns to represent the number



of L1-muxes and L2-muxes in one group respectively. The L1-
muxes can only connect to the L2-muxes in the same group
through a crossbar which aims to achieve the regularity of
detailed interconnections. We use Pp and Pw to represent the
crossbar population density [27] of LB input muxes and wire
driving muxes in L2-muxes respectively. Fp and Fw define the
ratio of LB input muxes and the ratio of wire driving muxes to
the total number of L2-muxes in one group (Ns) respectively.
For example in Fig. 4, the value of Nf and Ns are 3 and
2 respectively. Both the values of Pp and Pw are 1 as both
the LB input mux and wire driving mux can get connections
from all the L1-muxes in the group. Both the values of Fp

and Fw are 0.5 because half of the L2-muxes are LB input
muxes and the other half are wire driving muxes in the group.
The specific connections in L1-muxes follow a round-robin
scheme [4] which tries to distribute the wire segments to the
L1-muxes uniformly, based on the order of the segment index
and direction. The number of L1-muxes and L2-muxes can be
calculated by equation (1) and (2) respectively, where Nlb ipins

is the number of LB input pins in a tile and Nwires represents
the number of wires in one direction in a tile. The handling
of macro blocks is similar to that of LBs. The methods for
generating detailed connections are the same. The difference
of macro blocks and LBs is the number of output and input
pins.

NL1−muxes = Nf ×
⌈
Nlb ipins + 4×Nwires

Ns

⌉
(1)

NL2−muxes = Nlb ipins + 4×Nwires (2)

In addition, we enhance the XML tags in the architecture
description file to extend some detailed mux interconnections
in additional to the interconnections generated by the six
parameters as shown in Fig. 6. The <muxes> tag is added into
the top level tags and it is composed of several <mux> tags
which are used to describe the detailed interconnections for the
muxes. The name attribute is a unique symbol for each mux.
The <from> tags contain the fanins information of the mux.
The type attribute has three optional values which stand for
the output of other muxes, the output of LB and wire segment
respectively as shown in Fig. 6. For the output of other muxes,
the name attribute is the name of the mux. For the output of
LB, the name attribute corresponds to the output pin of the
LB. And for the wire segment, the name attribute contains
the direction and the index of the wire segment. Besides, the
additional switchpoint attribute means the switch point [28]
of the wire segment (only for wire length > 1). The switch
point at the start of the wire is given an index of 0 and is
incremented by 1 at each subsequent VIB. The last switch
point has an index of 0 because it is shared between the end
of the current segment and the start of the next one. With the
enhanced architecture description file, arbitrary interconnect
rules can be implemented.

Fig. 6. The enhanced XML tags in the architecture description file.

IV. TOOL ENHANCEMENT

In this section, the tool enhancement is introduced to
implement the VIB architecture modeling and exploring.

A. Enhanced Packer

VPR uses a packing algorithm which is based on the
AAPack greedy algorithm [29]. One of the conditions of a
legal packing solution is that all nets within a logical block
can be routed. The netlist block packed into a logical block
may have some connections with the netlist blocks which have
been packed into the same logical block. If there is no intra-
interconnects for such connections inside the logical block, the
solution will be traded as an infeasible packing and the netlist
block cannot be packed into the logical block. Fig. 7 is an
example which shows the situation. The output of LUT-1 is
also an input of LUT-2. In classical CB-SB FPGAs, the two
LUTs can be packed into one LBs. However, there is no intra-
connection available between the two LUTs in the proposed
VIB architecture. So, LUT-1 and LUT-2 cannot be packed
into the same logical block. The packer in VPR uses the
PathFinder negotiated routing algorithm to determine whether
a feasible routing solution can be found. Since we remove
the local interconnects outside the logical blocks, the input
pins of the logical block are connected with the LUT input
pins directly. The packer needs to be enhanced to support the
architecture [30] [31]. To illustrate the reason for enhancing
the packing algorithm, we run VTR flow with two different LB
architectures. The difference of the two LB architectures is that
one has local interconnects with full crossbar, and the other has
no local interconnect. TABLE II shows the numbers of LBs
needed to implement the benchmark circuits. Experimental
results show that it only needs 57.73% on the numbers of
LBs after adding the local interconnects with full crossbar.
The packing results of LBs without local interconnect are not
efficient and the LB density is low.

To achieve the efficient packing results, we enhance the
packer algorithm in VTR. A virtual full-connected crossbar is
built inside the LB before the AAPack greedy algorithm is
performed which is similar to [30]. It can simplify validating
the routability of clusters. After the packing stage, the virtual
full-connected crossbar is removed. And the signals of the
CLB input pins are marked as the same as the input pins of
internal LUTs. So the connections between CLB output pins
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Fig. 7. Comparison of the packing results with different LB architecture.

TABLE II
COMPARISON OF THE NUMBER OF LBS WITHOUT LOCAL INTERCONNECT

AND THE NUMBER OF LBS WITH FULL CROSSBAR.

Circuits # LBs with-
out local in-
terconnect

# LBs with full
crossbar

Ratio

arm core 3759 1587 42.22%
bgm 8873 3120 35.16%

blob merge 2123 828 39.00%
boundtop 95 92 96.84%

ch intrinsics 80 73 91.25%
diffeq1 195 63 32.31%
diffeq2 123 44 35.77%

LU32PEEng 7641 3261 42.68%
LU8PEEng 28050 11341 40.43%

mcml 17299 10471 60.53%
mkDelayWorker32B 552 547 99.09%

mkPktMerge 43 37 86.05%
mkSMAdapter4B 410 222 54.15%

or1200 941 372 39.53%
raygentop 305 205 67.21%

sha 1421 317 22.31%
stereovision0 1954 1632 83.52%
stereovision1 2252 1544 68.56%
stereovision2 7224 4367 60.45%
stereovision3 40 23 57.50%

Average 57.73%
a Ratio is the number of LBs with full crossbar divided by the number

of LBs without local interconnect.
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and CLB input pins still need to be routed through global
routing resources in the routing stage. The packing results
become efficient and the LB density get improved. In order
to get rid of the impact of software modification, we run the
baseline architecture and the VIB architectures with the same
packer in the following experiments.

B. Enhanced RRG Generator

To support the VIB architecture, we enhance the RRG
generator in VTR to model the FPGA routing resources. The
routing resources are presented by a directed graph G = (V,
E). Vertices V correspond to the routing nodes which can be
wires or LB pins, and edges E to the programmable switches.
The enhanced RRG generator can automatically generate the
routing nodes and edges according to the parameters described
in Section III-B. For two level muxes, we use the similar
modeling method in [22]. An intermediate node without timing
cost is used to model the connection between the first level
and the second level muxes. Fig. 8 shows an example of VIB
architecture and the corresponding RRG. Node E and F are
two intermediate nodes in Fig. 8.

C. Area and Delay Modelling

We use VTR to estimate the whole FPGA area and the
critical path delay which measures the area in minimum-
width transistor areas (MWTAs) [32] and uses Elmore delay
model to estimate the delay. We enhance the COFFE 2 [11]
to get the area and delay parameters needed by the VTR
architecture description file. COFFE 2 is a fully automated
transistor sizing tool for FPGAs which measures the area and
delay by relying on HSPICE simulation. The input file is
changed to an RRG file which contains all the routing nodes
and programmable switches of one FPGA tile. The FPGA
circuitry can be constructed by parsing the RRG file. Then,
the area and delay parameters of each cell can be obtained by
HSPICE simulation.

V. EXPERIMENTAL RESULTS

In this section, we describe the experimental methodology
and the baseline architecture. Then, we use the enhanced VTR
along with the provided benchmark set to compare the two
level mux architecture in [8] which is the latest paper to
explore two level mux architecture with the VIB architecture
in the area, delay and routability.

A. Experimental methodology

TABLE III shows the baseline architecture parameters. The
delay and area parameters which are used in VTR architecture
files are extracted from COFFE 2 at the 22nm technology
node. Each LB contains eight 6-input LUTs which is similar
to commercial FPGAs [25]. Unidirectional length-4 wires
with full switchpoints are used which have been proved to
achieve the best area-delay tradeoff [33]. The routing channel
width is fixed at 160 which is reasonable in prior work
[8]. The two level mux architecture in [8] is used as the
baseline routing architecture which can achieve great delay



improvement compared to CB-SB architecture. Finally, we
will compare the VIB architecture with the two level mux
architecture in the routability with Wmin, the minimum routing
channel width of each circuit.

TABLE III
BASELINE ARCHITECTURE PARAMETERS

LB Size Eight 6-input LUTs

DSP Elements 36 × 36 Fracturable Multipliers

Memories 32Kb Block RAMs

Channel Width 160

Wire Length 4

B. VIB Architecture with Different Parameters

In this section, we explore the VIB architectures with
different parameters which are introduced in Section III-B.
The fanin size of L1-muxes is set to 5 to get the signals
from wire segments in four directions and LB outputs which
is the same as [8]. When one parameter is explored, the
other parameters are kept fixed. Fig. 9 shows the results with
different parameters and the results are normalized to the two
level mux architecture in [8]. When the value of Nf is set to
8, the VIB architecture can achieve the best area and delay
tradeoff as shown in Fig. 9 (a). Nf means the number of L1-
muxes in a group. Larger Nf value leads to larger routing
area while smaller value may result in worse delay. About
the exploration of Ns, experimental results show that the VIB
architecture can achieve the best area and delay tradeoff when
Ns is set to 8 as shown in Fig. 9 (b). The area decreases
and the delay increases as the Ns increases. Fig. 9 (c) shows
the results of VIB architectures with different Pp and Pw.
Smaller Pp and Pw values can decrease the routing area, but
may lead to poor routability and long delay. Results show
that the VIB architecture can achieve the best area and delay
tradeoff when Pp = 1 and Pw = 0.75. Fig. 9 (d) shows the
results of VIB architectures with different Fp and Fw. As the
number of muxes is not correlated with Fp and Fw which can
be seen in equation (1) and (2), the routing area keep constant.
It can be seen that the VIB architecture can achieve the best
area and delay tradeoff when Fp = 0.5 and Fw = 0.5. When
Nf = 8, Ns = 8, Pp = 1, Pw = 0.75, Fp = 0.5 and Fw = 0.5, the
VIB architecture can achieve the best area and delay tradeoff.

C. Area and Delay Comparison

In this section, we compare the VIB architecture in Section
V-B with the two level mux architecture in [8] in the area
and delay. Experimental results show the VIB architecture can
achieve 18.9% area savings at the cost of 2.8% increase in
delay as shown in TABLE IV which is predictable. The L1-
muxes can only connect to the L2-muxes of LB pins or the L2-
muxes of wire segments in [8], but the L1-muxes can connect
to the L2-muxes of LB pins and wire segments simultaneously
which will increase the muxes loads and delay. In addition, the
less muxes may lead to the routing congestion. Especially, the

mkDelayWorker32B circuit has a 53.9% increase in critical
path delay. We found that most of the nets in the mkDelay-
Worker32B circuit are single-fanout nets as shown in TABLE I
which can not take advantage of the VIB architecture. The
less muxes in VIB architecture cause the routing congestion
which leads to the longer critical path delay. The reduction
of routing area is because the L2-muxes of LB pins and wire
segments can share the output of L1-muxes which decreases
in the number of L1-muxes. TABLE V lists the number of
switches in one tile for the VIB architecture and the two level
mux architecture in [8]. It can be seen that the VIB architecture
has fewer L1-muxes and fewer total programmable switches.
The channel utilization increases by 3% because the VIB
architecture has fewer programmable switches which leads to
more channel utilization.

D. Routability Comparison

In this section, we compare the VIB architecture in Sec-
tion V-B with the two level mux architecture in [8] in the
routability. As the VIB architecture is tileable which has been
described in Section III-A, the routing channel width can be
calculated by equation (3), where n is the number of wire
types, Nk represents the number of this wire type, Lk means
the length of this wire type. Since only length-4 wires are
used in the architecture, equation (3) can be simplified to
equation (4). We use a binary search algorithm to find the
minimum channel width which is similar to VPR. The router
is run repeatedly to find the smallest number of tracks to route
the circuit successfully. Experimental results show that the
VIB architecture can improve Wmin by 2% compared to the
baseline two level mux architecture as shown in TABLE VI.
Although there are fewer programmable connections in the
VIB architecture, routability can be improved by increasing the
interconnect utilization which is shown in Section V-C. The
small improvement in routability of VIB architecture comes
from the lack of fast LUT output feedbacks which connect
LUT output pins with LUT input pins. All the LUT output
feedbacks are connected to the L1-muxes and L2-muxes can
only get connections from L1-muxes, no fast LUT output
feedback. Fig. 10 shows the comparison of VIB architecture
with and without fast LUT output feedback and the red line
represents the fast LUT output feedback. This design approach
of VIB architecture without fast LUT output feedback can
improve the routability of the VIB architecture. However, it
may lead to longer delay without fast LUT output feedback
which has been prove in the Section V-C. In the future, fast
LUT output feedback in VIB architecture will be explored to
achieve better area-delay tradeoff.

W = 2×
n∑

k=1

(Nk × Lk) (3)

W = 8×Nk (4)



(a) Exploration of Nf . (b) Exploration of Ns.

(c) Exploration of Pp and Pw . (d) Exploration of Fp and Fw .

Fig. 9. Exploration of different parameters in VIB architecture.

TABLE IV
PERFORMANCE OF THE VIB ARCHITECTURE COMPARED WITH THE TWO LEVEL MUX ARCHITECTURE IN [8]

Circuit
Channel Utilization Routing Area (106) Critical Path Delay (ns) Area-Delay (106)

VIB [8] Ratio VIB [8] Ratio VIB [8] Ratio VIB [8] Ratio

arm core 0.298 0.270 110.4% 37.88 46.69 81.1% 9.60 9.53 100.7% 363.65 444.96 81.7%
bgm 0.379 0.359 105.6% 47.45 58.47 81.1% 9.63 9.43 102.2% 457.06 551.11 82.9%

blob merge 0.312 0.289 108.0% 13.27 16.36 81.1% 4.94 5.18 95.5% 65.60 84.66 77.5%
boundtop 0.014 0.014 100.7% 4.73 5.83 81.2% 1.09 1.25 87.5% 5.17 7.28 71.1%

ch intrinsics 0.021 0.021 98.1% 2.74 3.37 81.2% 1.63 1.71 95.4% 4.46 5.75 77.5%
diffeq1 0.098 0.098 99.5% 3.47 4.27 81.2% 16.88 16.82 100.4% 58.52 71.85 81.5%
diffeq2 0.079 0.079 100.0% 3.08 3.80 81.2% 12.49 12.55 99.5% 38.52 47.70 80.8%

LU8PEEng 0.341 0.331 103.0% 170.72 210.41 81.1% 45.59 46.31 98.4% 7782.73 9744.72 79.9%
LU32PEEng 0.453 0.416 108.9% 50.36 62.07 81.1% 43.79 43.90 99.7% 2205.28 2724.91 80.9%

mcml 0.245 0.237 103.4% 157.30 193.87 81.1% 41.75 40.63 102.7% 6567.09 7877.60 83.4%
mkDelayWorker32B 0.015 0.013 120.0% 50.36 62.07 81.1% 8.65 5.62 153.9% 435.77 348.96 124.9%

mkPktMerge 0.031 0.032 99.0% 14.82 18.27 81.1% 3.66 3.51 104.4% 54.32 64.11 84.7%
mkSMAdapter4B 0.086 0.085 101.3% 7.29 8.98 81.2% 3.45 3.37 102.3% 25.12 30.26 83.0%

or1200 0.095 0.091 104.2% 27.16 33.48 81.1% 8.51 7.97 106.8% 231.27 266.82 86.7%
raygentop 0.075 0.074 101.5% 12.51 15.42 81.1% 3.88 3.88 100.0% 48.49 59.77 81.1%

sha 0.216 0.209 103.3% 5.69 7.01 81.2% 6.96 7.12 97.8% 39.63 49.93 79.4%
stereovision0 0.141 0.133 106.0% 26.08 32.15 81.1% 2.01 1.90 106.2% 52.54 61.00 86.1%
stereovision1 0.228 0.226 100.9% 25.01 30.83 81.1% 4.19 4.03 103.9% 104.72 124.29 84.3%
stereovision2 0.359 0.375 95.7% 73.33 90.38 81.1% 9.79 10.60 92.4% 718.26 958.01 75.0%
stereovision3 0.052 0.058 90.1% 0.66 0.82 81.2% 1.46 1.38 105.6% 0.97 1.13 85.8%

Av. Improvement -3.0% 18.9% -2.8% 16.6%



TABLE V
THE NUMBER AND SIZE OF ROUTING MUXES IN ONE TILE OF THE VIB

ARCHITECTURE AND THE ARCHITECTURE IN [8]

Architecture MUX Name Num Size Total Switch Count

[8]

IB L1-MUX 80 5

1820
IB L2-MUX 48 13/14
SB L1-MUX 100 4
SB L2-MUX 80 4/5

VIB
VIB L1-MUX 128 5

1504
VIB L2-MUX 128 6/8

LB opins

wires
LB ipin

mux-0

mux-1

mux-3
or

LB opins

(a) The VIB architecture with
fast LUT output feedbacks.

LB opins

wires

LB ipin

mux-0

mux-1

mux-3

mux-2
or

(b) The VIB architecture without
fast LUT output feedbacks.

Fig. 10. Comparison of VIB architecture with and without fast LUT output
feedback.

TABLE VI
COMPARISON OF MINIMUM ROUTING CHANNEL WIDTH BETWEEN THE

VIB ARCHITECTURE AND THE ARCHITECTURE IN [8]

Circuit
Wmin

VIB [8] Ratio
arm core 136 136 100.0%

bgm 96 96 100.0%
blob merge 72 72 100.0%
boundtop 16 16 100.0%

ch intrinsics 24 24 100.0%
diffeq1 40 40 100.0%
diffeq2 24 32 75.0%

LU8PEEng 96 96 100.0%
LU32PEEng 144 144 100.0%

mcml 136 136 100.0%
mkDelayWorker32B 32 32 100.0%

mkPktMerge 32 32 100.0%
mkSMAdapter4B 40 40 100.0%

or1200 80 72 111.1%
raygentop 40 40 100.0%

sha 72 64 112.5%
stereovision0 40 48 83.3%
stereovision1 80 72 111.1%
stereovision2 104 104 100.0%
stereovision3 16 24 66.7%

Av. Improvement 2.0%
a Ratio is the minimum routing channel width of VIB architecture

divided by the architecture in [8].

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a tile-based VIB routing archi-
tecture. Six parameters are defined to describe the VIB ar-
chitecture. Besides, the packing algorithm and RRG generator
in VTR are enhanced to support the VIB architecture. Ex-
perimental results show that the VIB architecture can achieve
18.9% improvement on the routing area, 2% on the routability
and 16.6% on the area-delay product compared to the two level
muxes architecture in [8]. The VIB architecture eliminates
the problem of the area increasing in the two level mux
architecture [8].

In the future, there are still many researches to be carried
out about the VIB architecture. We will focus on the routing
channel segmentation with different lengths on the VIB archi-
tecture and try to find a near-optimal routing architecture in
an automated way like in [22]. Besides, the interconnection
rules also have potential to reduce the delay which we will
explore in the future. For example, mixed one level mux and
two level mux topology can be explored to trade off area and
delay which has been discussed in the Section V-D.
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