
An Open-Source Tool to Model and Explore
Complex Routing Architecture for FPGA

Kaichuang Shi, Lingli Wang*
State Key Laboratory of Integrated Chips and Systems

Fudan University, Shanghai, China
{19112020058, llwang}@fudan.edu.cn

Abstract—Routing architecture has a large impact on the
FPGA performance and area. In academia, the routing archi-
tecture is mainly based on the connection blocks (CBs) and
switch blocks (SBs) which is used in VPR. And there are input
crossbars inside the logic blocks (LBs). The routing architecture
in VPR is not tileable. Besides, it is hard to model the complex
routing architecture as in commercial FPGAs. In this paper, we
model a tile-based VRB (Versatile Routing Block) architecture
which replaces the CBs, SBs and input crossbars to alleviate this
problem. All the routing resources are included in the VRBs and
many routing features which are used in commercial FPGAs are
supported, such as bent wires, nearest neighbor interconnects
and two-level mux topology. In addition, VTR 8 is enhanced to
support the VRB architecture and we make it open publicly1.
Experimental results show that the proposed VRB architecture
can achieve 8.2% improvement on the critical path delay and
8.4% improvement on the area-delay product compared to the
latest two-level mux architecture.

Index Terms—FPGA, routing architecture, route, VPR, open-
source

I. INTRODUCTION

FPGAs are widely used due to the fact that they have
superiority in time to market, non-recurring engineering (NRE)
cost and flexibility [1]. Routing architecture has a large impact
on the FPGA area and performance. VPR (Versatile Place
and Route) is an open-source academic CAD tool which is
widely used to carry out the architecture exploration and CAD
researches for FPGA. The most common routing architecture
in academia is mainly based on the CBs and SBs which is
used in VPR [2]. CBs are used to connect wire segments with
LB pins while SBs provide programmable switches to connect
with different wire segments. Inside the LB, there is a local
crossbar to distribute the LB inputs and the local feedback
signals to the LUTs of the LB. Many researches have been
done to optimize the CB-SB routing architecture.

However, the CB-SB architecture is different from the
routing architecture in commercial FPGAs. The GRM routing
architecture in Xilinx FPGAs is widely used [3]. The GRM
architecture is tile-based and it contains complex multi-level
mux topology [4]. F4GA [5] is an open-source flow for hard-
ware description language to FPGA bitstream targeting some
commercial FPGAs. However, it is hard to do architecture
exploration as a routing resource graph (RRG) file is needed
and multi-level mux topology is not supported. Recently, there

1https://github.com/shikc/VTR Complex Interconnect

are some papers proposing new routing architectures to replace
the CB-SB architecture. For example, GIB [6], INTB [7], GRB
[8], VIB [9]. But all of them are not open-source and they are
not versatile enough to model the commercial FPGAs.

In this paper, we propose a VRB routing architecture
and make the enhanced VPR tool open to narrow the gap
between academic research and industry development. Our
contributions include:

• We enhance the FPGA architecture description format to
describe the VRB architecture. In order to evaluate the
performance of the architecture, we enhance the Routing
Resource Graph (RRG) generator in the latest VTR 8 [2].

• We evaluate the performance of the VRB architecture
whose area and delay parameters are extracted from
COFFE 2 [10] with VTR benchmarks. Experimental
results show that the VRB architecture can achieve 8.2%
improvement on the critical path delay and 8.4% on
the area-delay product compared to the two-level mux
architecture in [11].

The rest of this paper is organized as follows. Section II
introduces the academic CB-SB routing architecture and the
related work. Section III presents the VRB architecture and
the new features added in the routing architecture. Section IV
gives the enhancements in VTR 8 to support the proposed
architecture. Section V presents the baseline architecture and
experimental results. Section VI concludes this paper with
future work.

II. BACKGROUND AND RELATED WORK

A. Routing Architecture of Island-Style FPGAs

Island-style FPGA architecture mainly contains LBs, CBs
and SBs. And they are interconnected by vertical and horizon-
tal routing wires. Fig. 1 shows the CB-SB routing architecture.
W is the routing channel width and the wire length L defines
the number of LBs that the wire segment spans. CB flexibility
Fc,in & Fc,out represent the fraction of wire segments in
routing channel that an LB input and output pin can connect to
through CB respectively. SB flexibility Fs defines the number
of other wire segments that an incoming wire segment can
connect through SB.

B. Related Work

There are many open-source frameworks which target
FPGA CAD algorithm and architecture exploration. Open-
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Fig. 1. The detailed CB-SB routing architecture.

PARF [12] is an academic placement and routing (PAR) engine
for heterogeneous FPGAs which is implemented with deep
learning toolkit. However, it targets to the Ultrascale FPGAs
[13] and no timing information is supported which means it is
not timing-driven. It is not impractical to carry out architecture
research. RapidSmith [14] is an open-source framework to
enable researchers to directly experiment with CAD tools
for Xilinx FPGAs. Similarly, RapidSmith only targets to the
commercial Xilinx FPGAs which makes it impossible to
perform architectural exploration.

VTR has been commonly used as the infrastructure to con-
duct FPGA CAD and architecture research and development
[2]. VTR takes an XML-based architecture description file
and a digital circuit described in Verilog as inputs. There are
three components: Odin-II [15], ABC [16] and VPR [17].
The Odin-II elaborates and synthesizes the Verilog design
into a flatted netlist containing logical gates, flip-flops and
blackboxes. Then, ABC is used to perform logic optimization
and technology mapping. Finally, VPR packs the netlist into
the logic blocks, places and routes the circuit in the FPGA.
In addition, VPR will perform the result analysis and report
the statistics, such as the circuit performance, area, power and
total routed wirelength. Besides, VTR provides many hetero-
geneous benchmark circuits which are suitable for regression
tests [18].

Many researches about FPGA architecture have been per-
formed. For example, the exploration of LB size [19], LUT
size [20], LB local connectivity [21], optimizing the DSP
blocks for complex arithmetic operations [22] and developing
the routing architecture including SB patterns [23] [24] [25],
CB flexibility [26] and wire lengths [27] [28]. In addition,
many VTR enhancements are proposed to explore novel FPGA
routing architecture. In [29], X. Sun et al. proposed a bent
routing pattern which can span in vertical and horizontal
wires without passing through programmable switches and

it can improve area-delay product by 11% compared to the
architecture with length-4 straight wires. K. Shi et al. proposed
GIB routing architecture to replace the traditional CB-SB
architecture [6] [30], and experimental results show that the
GIB architecture can achieve 11.1% improvement on the area-
delay product compared to the CB-SB architecture. In [31], K.
Shi et al. proposed hexagon-based honeycomb routing archi-
tecture and experimental results show that it can achieve 9.9%
improvement on the routed wirelength, 11.5% on the critical
path delay and 12.4% on the area-delay product compared
to the traditional rectangular architecture. In [32], X. Tang
et al. explored tileable routing architecture, and experimental
results show that the tileable architectures can improve the
minimum routable channel width by 13% and area-delay
product by 2% compared to the well-optimized non-tileable
architectures in VTR. Tile-based architecture has also widely
used in commercial FPGAs [3] [33]. Because the full fabric
can be built with a small number of repeatable tiles which
can simplify the development of FPGA layouts. In [8], J.
Qian et al. proposed GRB routing architecture to model two-
level muxes with output sharing and bent wires which are not
supported in VTR. Then, K. Shi et al. explored the feedback
interconnects in GRB architecture [34]. VTR is very powerful
in the support of logical block. It can support the latest Intel
Stratix 10 [35] and Agilex [33] devices including the complex
DSP and embedded memory block [36]. However, the support
of routing architecture is not powerful enough to model the
commercial FPGAs. For example, the VPR architecture file
format and routing resource graph generator do not support
multistage routing switches [36]. The source of LB input
muxes (LIMs) can only from wire segments, no LB output
feedbacks. The feedback interconnects only exist in the local
interconnect inside the LB. In addition, the detailed routing
architecture can only be generated automatically through the
abstract parameters as introduced in Section II-A and it is hard
to adjust the routing switches in detail. These deficiencies in
routing architecture inspire us to carry out the work. In this
paper, we enhance VTR to support complex FPGA routing
architecture and make it open publicly.

III. VRB ARCHITECTURE

In this section, we propose tile-based VRB architecture.
Then, we introduce the new features we added in VPR to
model the complex interconnect architecture in the commercial
FPGAs.

A. Tile-based VRB Architecture

Fig. 2 shows the proposed VRB architecture which is tile-
based. Each tile is composed of an LB and a VRB. Each
LB can interact with the corresponding VRB which contains
all the routing programmable switches in one tile. Arbitrary
level muxes are supported in VRB. Fig. 3 shows an example
of the detailed interconnect architecture in VRB, the node 6
can not only get connections from node 0 through a two-
level mux architecture (mux-0 and mux-2), but also can get
connections from node 4 through a one-level mux architecture



LB

Tile Tile

Tile Tile

Tile

VRB
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Fig. 3. An example of the detailed interconnect architecture in VRB.

(mux-2). For convenience, all the nodes go into the VRB are
drawn in the left of this figure and all the nodes leave the
VRB are drawn in the right of this figure. In VRB, we can
customize the connections of arbitrary level muxes as we need.
The intermediate nodes between different muxes are modeled
by length-1 wires without timing cost.

B. Bent Wires

Bent (Diagonal) wires are widely used in many commercial
FPGAs. For example, length-5 bent wires in Xilinx Virtex-5
FPGAs [3], length-2 and length-6 bent wires in Xilinx 7-series
FPGAs [4]. Each length-L wire segment contains one start
point (SP), (L − 1) middle points (MPs) and one end point
(EP). Fig. 4 shows one example of length-2 bent wires. Each
wire segment can be driven by a buffered mux at the SP and
connect to the other wire segments at the MPs and EP. There
are two optional bent types {CC,CW} for each MP. CC is
the counterclockwise type, and CW represents the clockwise
type. We enhance the VTR architecture description file format
to describe the bent wires which is similar to [29]. We add the
<bend> tag to represent the bent type at each MP. In addition
to the bent type (CC and CW ), straight (ST ) type is also
supported. Fig. 4 shows one example of length-2 bent wires
and the corresponding architecture description. The length-2
bent wire has one MP whose bent type is CC. The other tags
in the architecture description file are the same as that in the
original VTR.

SP MP

EP

(a) Lenth-2 bent wires. (b) The corresponding description.

Fig. 4. One example of length-2 bent wires and the corresponding architecture
description file.

Fig. 5. An example of the detailed interconnects description format in VRB.
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Fig. 6. The corresponding detailed architecture of Fig. 5.



C. Detailed Interconnects

To support the detailed interconnects in VRB, we enhance
the architecture description file format in VTR as shown in
Fig. 5. Fig. 6 shows the corresponding detailed architecture
of Fig. 5. The <muxes> tag is added into the top level
tags and it is composed of several <mux> tags which are
used to describe the detailed interconnects for the muxes.
The name attribute is a unique symbol for each mux. For the
driving muxes of wire segments and LB input pins, additional
attributes are added to recognize them as shown in Fig. 5.
Attributes to seg name and to track which correspond to the
type name of this wire segment and the direction, index of
this wire segment respectively are used to describe the driving
muxes of wire segments. Attribute to pin which corresponds
to the name and index of the LB input pin is used to
describe the driving muxes of LB input pins. The <from>
tags are used to describe the information of mux fanins. The
types of mux fanin include three options: mux, seg and pb
which corresponding to other mux output, wire segment and
LB output feedback respectively. The attribute from details
represents the detailed information of the fanins.

D. Nearest Neighbor Interconnects

Nearest Neighbor (NN) interconnects which provide fast
connections between adjacent logic blocks are widely used
in many commercial FPGAs. For example, the LAB’s local
interconnects can be driven by the left/right blocks through
the direct link connections in Intel Stratix IV FPGAs [37].
The similar interconnects are also used in Xilinx FPGAs [4].
Fig. 7 shows an example of NN interconnect architecture in
VRB. The i0 input pin of LB B can get connection from
the O1 output pin of LB A without passing through any
wire segment. To describe the NN interconnects, we add two
attributes (x offset and y offset) in the <from> tag as
shown in Fig. 7. Attributes x offset and y offset stand for
the offsets of the two LBs with NN interconnects in x and y
directions respectively. The default values of both x offset
and y offset are 0 which means the connection from LB
output pin is from the LB itself as shown in Fig. 5 and Fig. 6.

A B
LB-i0LB-O1

NN interconnect

mux-2

Fig. 7. An example of the NN interconnect architecture in VRB.

IV. TOOL ENHANCEMENT

In this section, the tool enhancement is introduced to
implement the VRB architecture modeling and exploration.

A. Enhanced RRG Generator

To support the VRB architecture, we enhance the RRG
generator in VTR to model the FPGA routing resources. The
routing resources are presented by a directed graph G = (V,
E). Vertices V correspond to the routing nodes which can be
wire segments or LB pins, and edges E to the programmable
switches between different vertices. For multi-level muxes, we
use the similar modeling method in [8]. An intermediate node
without timing cost is used to model the connection between
the front level and the back level muxes. For the support of
bent wires, one wire segment is divided into several parts
according to its bent points and each part is represented as one
vertex in the RRG. They are connected by non-configurable
delayless switches which are treated as edges in the RRG.

V. EXPERIMENTAL RESULTS

In this section, we describe the experimental methodology
and the baseline architecture. Then, we use the enhanced
VTR along with the provided benchmark set to evaluate the
architecture in the area and delay.

TABLE I
BASELINE ARCHITECTURE PARAMETERS

LB Size Eight 6-input LUTs

DSP Elements 36 × 36 Fracturable Multipliers

Memories 32Kb Block RAMs

Routing channel width 160

Wire Length 4

Fig. 8. VRB architectures with different R values.

A. Baseline Architecture

In this paper, we use the two-level mux architecture in [11]
as the baseline architecture which is the latest work to explore
the two-level mux topology. It has been proved that two-level



Fig. 9. VRB architectures with different bent wires.

mux topology can achieve better area-delay tradeoff compared
to the one-level mux topology in CB-SB architecture. TABLE I
shows the baseline architecture parameters. The delay and
area parameters which are used in VTR architecture files are
extracted from COFFE 2 [10] at the 22nm technology node.
COFFE 2 is a fully-automated transistor sizing tool for FPGAs
which relies on HSPICE simulation.

B. Architecture with Different features

In this section, we explore the VRB architecture with
different features which are introduced in Section III.

Firstly, we explore the ratio of one-level mux and two-
level mux connections in VRB architecture. Parameter R is
defined to describe the ratio of fanins from wire segments and
feedbacks directly in the driving muxes of wire segments and
LB input muxes. For example, the value of R is 1 in CB-SB
architecture as it is one-level mux topology and all fanins of
the driving muxes of wire segments and LB input muxes are
from wire segments and feedbacks directly. The value of R
is 0 means that it is two-level mux topology and all fanins
of the driving muxes of wire segments and LB input muxes
are from level-1 muxes. Fig. 8 shows the results with different
R values and the results are normalized to the two-level mux
architecture in [11]. When the value of R is set to 0.25, the
VRB architecture can achieve the best area and delay tradeoff
and it can improve the critical path delay by 4.0% and area
by 2.3%. One-level mux topology usually needs bigger mux
size to keep the routability. Two-level mux topology leads to
pass through two muxes to achieve connections. Experimental
results show that mixed one-level and two-level mux topology
is a better choice.

Then, bent wires are explored based on the VRB architec-
ture with R = 0.25. We design several VRB architectures
with different length-4 bent wires which is similar to [30].
The wire length is restricted to 4 which aims to eliminate
the performance improvements due to different wire lengths.
Experimental results show that VRB architecture with bent
wires can achieve 6.0% improvement on the critical path
delay and 2.3% improvement on area compared to the baseline

architecture as shown in Fig. 9. There is no significant change
in area as the wire length is kept fixed.

Fig. 10. VRB architectures with different N values.

Then, NN interconnects are explored based on the VRB
architecture which can achieve the best area and delay tradeoff
in Fig. 9. Radius is defined to represent the distance of two
LBs. Especially, the Radius between two diagonal LBs is
also defined as 1. Evidence shows that the net connections
with a Radius of 1 account for 28.7% of the whole net
connections on average [30]. So, we focus on exploring the
NN interconnects with Radius = 1. We use N to represent the
number of NN interconnects for each LB output pin. Fig. 10
shows the results with different N values. Experimental results
show that the VRB architecture can achieve the best area and
delay tradeoff when N is set to 2 and it can achieve 8.2%
improvement on the critical path delay and 8.4% improvement
on area-delay product compared to the baseline architecture.
Bigger N will lead to bigger routing area and larger mux size.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a tile-based VRB routing architec-
ture for FPGAs and make it open publicly to narrow the gap
between academic research and industry development. Several
new features are extended in VTR 8. Based on the VRB



architecture, we explore the effects of different features on
the FPGA area and delay. Reference [30] proposed a searching
framework based on the SA algorithm to explore the FPGA
routing architecture and reference [38] explored general rout-
ing architecture via Bayesian optimization algorithm. In the
future, we will try to develop a similar automated architecture
exploration tool to find the near-optimal architecture in area-
delay tradeoff.
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