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Abstract—Routing architecture has a significant impact on 
the area, critical path delay and power consumption of modern 
FPGAs. The most common routing architecture of island-style 
FPGAs in academia is the CB-SB model, which is not effective 
to model complex routing architectures in modern FPGAs. To 
improve the routability and performance of the existing routing 
model, we propose a new routing model called General Routing 
Block (GRB) to model complex commercial FPGAs. In the 
proposed model, all routing resources can be divided into three 
modules: general switch block (GSB), input connection block 
(ICB) and output connection block (OCB). The GSB and ICB 
are extended from the SB and CB with more flexible and richer 
connections. The OCB is a new module that provides novel 
connections for the LB output pins. We support bent wire 
architecture to reduce the delay, and two-level MUXes with 
output sharing to achieve a better trade-off between the area 
and flexibility. Moreover, to explore the trade-offs of different 
design spaces and find better architectures, an architecture 
exploration platform based on the simulated annealing 
algorithm is proposed to efficiently explore the enormous design 
space specified by a set of parameters. The results of global 
design space exploration show that the architecture with the 
proposed GRB model reduces the critical path delay by 15.5% 
and area-delay product by 14.8% compared to the length-4 CB-
SB architecture based on the VTR benchmarks. After further 
local subspace explorations, the best architecture can achieve an 
18.7% improvement on the critical path delay and a 23.8% 
improvement on the area-delay product, which represents a 
significant improvement over other routing architectures. 

Ⅰ.    INTRODUCTION 

Field Programmable Gate Array (FPGA) is widely used in 
many applications, such as artificial intelligence, automotive, 
and communication, etc., because of its great flexibility, 
parallelism, low non-recurring engineering(NRE) cost, and 
fast time-to-market[1]. Studies have shown that routing 
architecture has a great influence on the FPGA area, delay, 
and power consumption [1][2]. The most common routing 
architecture of island-style FPGA in academia is the CB-SB 
model, which includes connection blocks (CBs), switch 
blocks (SBs) and routing channels. Based on the CB-SB 
model, there have been many studies about routing 
architectures, such as routing segments [3]-[5], routing 
patterns [6]-[9] and fast interconnections [10][11].  

However, the routing architectures of modern commercial 
FPGAs are too complex to be modeled by the CB-SB 
architecture in VTR 8.0 [12]. Some researchers proposed 
different architectures, such as CS-Box [13], GSB [14], GIB 
[15], INTB [16] among others [17][18]. But most of them are 
still difficult to support commercial FPGA architectures. 
Symbiflow [19] solves this problem, but it only supports some 
old commercial FPGAs and we need to provide the RR-graph 
if we want to extend new commercial FPGA architectures in 
Symbiflow. To narrow the gap between academic research 
and industrial development, reference [20] developed an 

open-source tool to facilitate the analysis of commercial 
FPGA routing architectures and applied it to the 7-Series 
architecture family. According to reference [20], some 
architectures in commercial FPGAs, such as bent wires [9] 
and two-level MUXes with output sharing [21], have not yet 
been supported in a unified academic model. In addition, there 
have been few researches explored the trade-offs of these 
architectures. In this paper, we propose a unified FPGA 
routing model, GRB, to support these architectures and 
improve the routability and performance of existing routing 
models. Based on the GRB model, an exploration platform is 
proposed to explore the design space combined by these 
architectures and find the optimized routing architecture. The 
key contributions of our work are as follows: 

(1) A routing architecture model called GRB is proposed to 
model modern FPGAs. All routing resources in a GRB 
can be divided into three modules: general switch block 
(GSB), input connection block (ICB) and output 
connection block (OCB). Bent patterns [9] and two-level 
MUXes with output sharing [21] are supported in the 
GRB model. To evaluate the performance of the proposed 
model, the FPGA architecture description file and routing 
resource graph (RRG) generator in the VTR 8.0 release 
[12] are extended. Two sets of parameters, coarse-grained 
and fine-grained descriptions, are proposed to explore the 
design space. 

(2)  An exploration platform inspired by TORCH [22][23] is 
developed to efficiently explore the enormous design 
space of FPGA routing architectures specified by a set of 
parameters. The platform which is based on the simulated 
annealing algorithm can search for an optimized 
combination of different segments and driving 
relationships in the architecture automatically. It will 
significantly reduce the time required to design the 
architectures manually. The area and delay parameters 
are determined by the transistor sizing tool COFFE 2 [24], 
which has been updated to support the GRB model.  

(3) The area and delay of the best architecture reported by the 
platform are analyzed with the VTR benchmarks. The 
results show that the GRB architecture has an average 
improvement of 15.5% on the critical path delay and   
14.8% on the area-delay product compared to the length-
4 CB-SB architecture. Besides, in further subspace 
explorations, we search the segment distribution, bent 
pattern, and driving relationship separately based on the 
iterative optimization method. The contribution of the 
above subspaces to critical path delay is analyzed, and the 
best architecture can achieve 18.7% improvement on the 
critical path delay and 23.8% improvement on the area-
delay product, which shows a significant improvement 
over other routing architectures. 



 In the rest of this paper, Section Ⅱ introduces the common 
FPGA routing architecture and some related work. The details 
about the GRB model are shown in Section Ⅲ. Section Ⅳ 
explains the architecture exploration platform and its 
implementation. Finally, the experimental results and 
conclusion are shown in Section Ⅴ and Section Ⅵ. 

Ⅱ.    BACKGROUND AND RELATED WORK 

A. FPGA Routing Architecture 

The routing architecture of island-style FPGAs based on 
the CB-SB model is shown in Fig.1. The basic routing 
resources include wire segments and programmable switches. 
LBs are surrounded by wire segments on all four sides. W is 
the channel width which specifies the number of wire 
segments in one channel. The input or output pins of LBs can 
connect to some wire segments in the adjacent channel via 
CBs. The parameters 𝐹௖,௜௡  𝑎𝑛𝑑 𝐹௖,௢௨௧  are the input and output 
CB flexibilities which specify the fraction of wires in a routing 
channel connected by an LB pin. SBs are placed in every 
intersection of a horizontal channel and a vertical channel. It 
includes some programmable switches which allow wire 
segments adjacent to the SB to be connected to others. The 
parameter  𝐹௦  is the SB flexibilities which specifies the 
number of wires to which each incoming wire can connect.  

 
 

 

Fig.1  FPGA CB-SB architecture 

 

B. Related Work 

There are many studies about FPGA routing architectures. 
Reference [5] studies the influence of segment length 
distribution on the FPGA area and delay. The result shows the 
combination of length-4 wires and length-8 wires can achieve 
the optimal area-delay product. Reference [9] proposes the 
bent routing pattern, where the routing segments can span in 
both vertical and horizontal channels without passing through 
any turning switch. The result shows that bent routing 
topology achieves 9% shorter critical path delay and 11% 
area-delay product savings on average compared to the 
architecture with only straight wires. In addition to routing 
segments, there are also researches about neighbor 
interconnect, which is a fast connection between adjacent LBs 
that can achieve a lower delay. Reference [10] explores the 

topologies, quantities, and distances of neighbor interconnect 
and the best interconnect achieves a 6.4% improvement in the 
critical path delay. However, these researches are based on the 
CB-SB model, which is not effective to represent a large 
enough optimization space to be explored.  

 There are also some researches focusing on different 
routing architectures. Kejie Ma et al. [14] propose a GSB 
model used in bidirectional routing architecture. It has a larger 
exploration space compared to CS-Box [13] and  is 24.3% 
better than the CB-SB model in terms of the product of the 
delay and channel width. Kaichuang Shi et al. [15] propose a 
GIB model in unidirectional routing architecture and achieves 
8.3% improvement on the critical path delay and 9.9% 
improvement on the area-delay product on average compared 
to the CB-SB model. However, although these models have 
more flexible connections, they still have a similar topology 
as the CB-SB model. Reference [16] presents an INTB model 
with two-level local MUXes and curve wires to describe 
complex interconnect in modern FPGAs. But the architecture 
description is not flexible enough and they do not explore 
architecture. Reference [20] points out that there have been 
few researches explored the trade-offs in complex routing 
architectures, which has already existed in commercial FPGA. 
To promote the solution to this problem, we propose GRB to 
model and explore complex routing architectures. TABLE I 
shows the differences between the above architectures and our 
work, and other flexible connections mean more flexible and 
powerful interconnections than the CB-SB model. 

TABLE I THE DIFFERENCES BETWEEN PREVIOUS ARCHITECTURES AND OUR 
WORK. 

Arch. 
Feature 

Bent 
Pattern 

[9] 

GIB 
[15] 

INTB 
[16] 

Two-level 
MUXes 

[21] 

Our 
Work 

Bent wire      
Two-level 
MUXes 

with Output 
Sharing 

     

OCB      
Other 

Flexible 
Connections  

     

 

Ⅲ.    GRB MODEL 

A. GRB Model Overview 

The overview of the proposed GRB model is shown in 
Fig.2(a)&(b), which is based on tileable FPGAs. Inside each 
tile, there are an LB and a GRB which includes all routing 
resources in the tile. The LB is connected to the GRB module 
via the local interconnections while GRBs are connected by 
global wire segments. The input or output pins of LB are not 
equivalent. Both straight wires and bent wires [9], which can 
decrease the path delay for passing through fewer MUXes, are 
supported. Two-level MUXes with output sharing [20], as 
shown in Fig.2(d), which can provide more flexibility and 
reduce the load on the wire segments without increasing the 
area if designed properly [16], are also supported in the GRB 
module. Besides, the GRB support near local routing, which 
is a fast interconnection of neighboring tiles. 

 The GRB module can be further divided into the following 
three small modules which are composed of a large number of 
MUXes, as shown in Fig.2(c): 



 ICB: It is used for the connections of the global 
segments to the LB input pins. It also includes partial 
feedback connections and neighboring connections 
[10]. The feedback connection means the OCB outputs 
and LB output pins of this tile can connect to the LB 
input pins through ICB. The neighboring connection 
means the OCB outputs of adjacent tiles can connect 
to LB input pins through ICB. 

 OCB: It is used for the connection of the LB output 
pins to the global segments. Besides, the OCB outputs 
can also be used as feedback connection and neighbor 
connection. 

 GSB: It contains networks of MUXes connecting its 
inputs to outputs, with the number of MUXes along the 
path limited to two. GSB is used for the connections 
between the global segments. Besides, It also includes 
the direct connections from the OCB outputs and LB 
output pins to the global segments. 

 

 

 

Fig.2  The proposed GRB model 
 

 The detailed routing architecture of the GRB model is 
shown in Fig.3. The ICB has similar functions as CB, but with 
a richer connection. The routing tracks on four sides of a GSB 
can connect to ICB in the GRB model while only one side of 
an LB can connect to CB in the CB-SB model. Besides, the 
driving source of ICB also includes OCB outputs in this tile, 
the output pins of LB in this tile or adjacent tiles, and ICB 
outputs in this tile. These connections greatly increase the 
flexibility of routing architecture, reduce the number of 
programmable switches on the paths and improve the 
routability. The OCB enables the LB output pins to be 
connected to the GSB either directly or via a MUX. It can 
connect more different LB output pins to global wire segments, 
which also provides more choices for routing. While the LB 

output pins can only connect to SB directly in the CB-SB 
model.  

 Fig.3(b) shows the detailed connections in GSB. The 
connections between wire segments are the same as the 
connections in SB. Besides, the wire segments on four sides 
are equal for this tile. The output pins of LB and OCB outputs 
can connect to segments on all four sides and segments can 
connect to ICB input directly. All these connections need at 
most one programmable switch while two are required in the 
CB-SB model if LB pins and wire segments are not on the 
same side of LB. So the GRB model can achieve a better 
performance in delay. 

 

 

(a) Detail routing architecture of ICB/OCB  

 

 

(b) Detailed routing architecture of GSB  

Fig.3  Detailed routing architecture of GRB model 

  

B. Two-level MUXes 

 In the GRB model, we present the two-level MUXes with 
output sharing [20], which means the outputs of the first-level 
MUXes are used as the inputs of multiple second-level 
MUXes. Fig.4 shows schematic diagrams of the two-level 
MUXes. The advantage of MUXes with output sharing is that 
it can reduce the area, which is very important in modern 
FPGA design. In Fig.4, outputs A and B both have four sources, 
but only four 2:1 MUXes are required while six 2:1 MUXes 
are required if there is no output sharing. In addition, it is 
mentioned in reference [16] that the two-level MUXes can be 
used to reduce the MUX load of the global segments, and in 



reference that it can reduce the number of SRAM cells. In 
summary, the output sharing of MUXes results in a better 
trade-off between the area and architecture flexibility. 
Reasonably designed two-level MUXes can provide higher 
flexibility without increasing the area so that global segments 
could have more paths in GRB to swap or connect to more LB 
input pins.  

 

 

(a) Two-level MUXes without output sharing 

 

 
(b) Two-level MUXes with output sharing 

 

Fig.4  Example of two-level MUXes  
 

C. VTR Architecture File Enhancement 

The architecture file in VTR 8.0 is extended to support the 
GRB model. We propose two sets of parameters with 
different granularity to describe the design space:   

1)  Coarse-grained description.  
An XML tag called <grb_arch> with the detailed 

structure is designed as shown in Fig.5(a), and the related 
comments explain the meaning of the attributes. Tag <ocb>, 
<icb> and <gsb> describe the connection in OCB, ICB and 
GSB. Tag <from> describes the different driving sources 
within each module. The attribute type specifies the type of 
driving sources. It can be four types: global segments, OCB 
outputs, ICB outputs and LB output pins. The attribute 
num_foreach specifies the connection number of these 
driving sources. The attribute reuse decides whether the 
source is connected to the sink with output sharing or not. 
Besides, there is a tag <seg_group> which specifies the 
driven segment types.  

Fig.5(b) shows the connection schematics of tag <gsb> in 
Fig.5(a). There are eight L1 tracks where each L1 track is 
driven by two L1 tracks, two L2 tracks, one L8 track, and 
three clb:q output pins. The first three are connected by two-
level MUXes, and the last one, L8, is connected to L1 directly. 
There are six L2 tracks and each L2 track is driven by three 
L2 tracks, two L4 tracks, and six OCB outputs. The first one 
is connected directly, and the latter two are connected by two-
level MUXes. 

 
(a)  Example of tag <gsb_arch> 

 

 
 

(b)  Connection schematic of tag <gsb > 
 

Fig.5  Coarse-grained description example 
 

2) Fine-grained description.  
To support two-level MUXes in ICB and GSB. A detailed 

description tag <multistage_muxs> which can describe the 
detailed connection of each MUX in one tile is designed as 
shown in Fig.6(a). Tag <first_stage> and <second_stage> 
describe the first-level MUXes and second-level MUXes. 
Tag <mux> is used to describe the detailed connection of one 
MUX. Each <from> tag specifies one or more inputs. The 
attribute type and name specify the type and name of the 
driving source. The attribute from_detail specifies the 
detailed driving source with an index number: it consists of 
direction and track numbers for segments; while for other 
types, it consists of index numbers only. The attribute 
mux_name is only used in <second_stage>. It specifies the 
name of first-level MUXes which connect to the second-level 
MUXes. 

Fig.6(b) shows an example of tag <multistage_muxs> and 
the corresponding connection schematic, mux-1-0 is the first-
level MUX that has four inputs. E-b0 and N-b0 are the 
second-level MUXes. They have five inputs, three of which 
are the outputs of the first-level MUXes. The fine-grained 



description can be generated by the information described in 
Fig.6 or written manually. 

 

 
 

(a) Example of tag <multistage_muxs> 
 

 
(b) Connection schematic 

 

 

Fig.6  Two-level MUXes connection example 
 

D. RRG generator 

To support the GRB model, we rewrite the Routing 
Resource Graph (RRG) generator in VPR. The RRG is a 
directed graph 𝐺 = (𝑉, 𝐸). V is a set of nodes, each 𝑣௜ ∈ 𝑉  
represents a routing track or an LB pin. E is a set of edges, 
each 𝑒௜,௝ ∈ 𝐸  represents a connection of a programmable 
switch between two nodes 𝑣௜  𝑎𝑛𝑑 𝑣௝ . Our RRG generator 
generates concrete connections per tile according to the 
driving relationship or detailed MUX connections specified 
by the arch. For two-level MUXes, a low-cost node that 
includes no timing cost is used to represent the connection 
between first-level MUXes and second-level MUXes. And we 
also reserve extension interfaces for the more multilevel 
MUXes. Fig.7 shows an example of RRG for two-level 

MUXes. The method to support bent segments is the same as 
the reference [9]. Each part of bent wires is represented as a 
vertex in the RRG. A non-programmable and low-cost edge is 
used as the connection between adjacent parts of bent wires, 
as shown in Fig. 7(b). 

 

 

(a)  Two-level MUXes example 
 

 

(b)  Bent segment example 
 

Fig.7  Example of RRG 
 

 

Ⅳ.    ARCHITECTURE EXPLORATION PLATFORM 

 The design space for the architecture based on our model 
is enormous because there are so many subspaces that we can 
specify in the architecture, such as the distribution of segments, 
driving relationship in GRB and so on. It is impractical to 
search these spaces manually. So we propose an architecture 
exploration platform that is inspired by TORCH [22][23] to 
efficiently explore the design space of routing architectures. 
The simulated annealing algorithm is adopted as the overall 
framework. Algorithm 1 shows the pseudocode of our 
platform. 

The platform takes baseline architecture A and benchmark 
sets B as inputs. Then it runs the RunBaseline() which calls 
VTR to evaluate the area and delay of baseline A with 
benchmark sets B. InitArch() generates an architecture 
randomly as the initial architecture to be optimized. We can 
also specify an architecture artificially. EvaluateCost() makes 
multiple calls to VTR in parallel to evaluate the delay and area 
of the architecture M on each benchmark and compare with 
the baseline, calculating the cost required by simulated 
annealing algorithm to evaluate the performance of the 
architecture M relative to baseline A. The expression of the 
cost function is as follows: 

cost(M) =
ଵ

௞
∑ (

௔್,ಾ

௔್,್ೌೞ೐
)ఈ × (

ௗ್,ಾ

ௗ್,್ೌೞ೐
)ఉ௞

௕ୀଵ   (1) 



where 𝑎௕,ெ, 𝑎௕,௕௔௦௘ , 𝑑௕,ெ and 𝑑௕,௕௔௦௘  is the area and delay of 
architecture M and baseline A on benchmark sets B. The 
exponent 𝛼, 𝛽 > 0, control the trade-off between area and 
delay, k is the number of benchmarks. 

 The while loop at line 5 performs the simulated annealing 
process to explore architecture. NewSegments() updates the 
segments in four dimensions: length, bent pattern, number of 
each segment and number of segment types. NewGRB() 
updates the driving relationship in ICB and GSB and the MUX 
number of OCB. NewArch() generates a new architecture 
according to new segments and GRB. Then EvaluateCost() is 
called to evaluate the performance of the new architecture.  

 The possibility of architecture updating is controlled by 
the temperature T, the higher the T, the higher the possibility 
of updating and the greater the difference between the two 
architectures. As T decreases, the changes of the architecture 
will become smaller and smaller, and eventually converge to 
a new optimized architecture. Besides, if we only run part of 
NewSegments() or NewGRB() in the platform, we can explore 
a subspace.  

  

 

Ⅴ.    Experimental Results 

A. Baseline Architecture 

The parameters of the baseline architecture we used to 
compare are shown in TABLE II. The LB includes eight 6-
input non-fracturable LUTs, and the connectivity of the input 
crossbar is set to 50% which is reasonable. The channel width 
is fixed. Because in the GRB model, the channel width is 
uniquely defined according to the number of each segment 
and it’s reasonable in real FPGAs. The expression to calculate 
the channel width is shown in formula (2), where n is the 
number of segment types, 𝑁௞ represents the number of this 
segment type, 𝐿௞ represents the length of this segment type. 

We multiply it by 2 because we use unidirectional segments, 
each of which has two opposite directions.  

𝑊 =  2 × ∑ 𝑁௞ × 𝐿௞     ௡
௞ୀଵ   (2) 

The segment used in baseline architecture is length-4 
straight wires with full switchpoints which is proved to 
provide the best performance in the unidirectional CB-SB 
model [25]. The area and delay parameters for segments and 
MUXes in the baseline are extracted from the transistor sizing 
tool COFFE 2 [24]. Besides, because COFFE 2 only supports 
the CB-SB model, we modified it to get the parameters for 
the GRB model. All of the parameters are determined at the 
22 nm technology node. The trade-off between area and delay 
for COFFE 2 is 3:7 which achieves a great trade-off between 
the area and delay in our experiment.   

TABLE II PARAMETERS OF BASELINE ARCHITECTURE 

LB Size Eight 6-input Non-fracturable LUTs 
LB Input Crossbar 50% 

DSP Elements 36×36 Fracturable Multipliers 
Memories 32Kb Block RAMs 

Channel Width Same as the W in the GRB model to be 
compared 

𝐹௖,௜௡ 0.1 
𝐹௖,௢௨௧ 0.1 

𝐹௦ 3 
Switch Type Wilton 

Segments Length-4 straight wires 
 

B. Global Design Space Exploration 

We use the platform discussed in Section-Ⅳ to search for 
architectures with great performance. The global design 
space includes the following parts: 1) segment type and 
distribution; 2) bent patterns; 3) driving relationship in GRB. 
It takes about 10 days on one machine with Intel(R) Xeon(R) 
Gold 6126 CPU @ 2.60GHz to finish the exploration while 
one iteration takes about one hour. The segment distribution 
and driving relationship of the best architecture reported by 
the platform are shown in TABLE III and TABLE IV. The 
definition of the bent pattern in TABLE III is the same as [9], 
while ST represents the straight type, (n, CC/CW) represents 
counter-clockwise or clockwise bend types in n-switchpoint. 
The architecture includes 7 length-1 straight wires, 9 length-
2 straight wires, 5 length-6 straight wires, and 2 length-8 
straight wires.  

According to formula (2), the routing channel width is 142. 
L1 and L8 can be driven by all other segments to provide 
flexibility for both short segments and long segments. L1 does 
not drive L2 and L8 does not drive L6, one possible reason is 
that the length is approximately the same and they can drive 
ICB input directly. There is no need to add extra flexibility 
which may increase the delay. 

The improvements of the architecture compared to the 
baseline are shown in TABLE V. The routing area reported by 
VTR 8.0 depends on the benchmarks because different 
benchmarks require different array sizes. For the CB-SB 
model, the total routing area includes both the global routing 
area and local routing area which equals the area of the 
crossbar in LBs. The GRB model achieves local routing in 
GSB so there is no crossbar in LBs. The results show that the 
architecture based on the GRB model has an average 
improvement of 15.6% in the critical path delay and 8.0% in 



the area-delay product compared to the CB-SB baseline 
architecture. 

TABLE III  SEGMENT DISTRIBUTION OF THE BEST ARCHITECTURE 

Name Length Number Bent Pattern 
L1 1 7 ST 

L2 2 9 ST 
L6 6 5 ST 

L8 8 2 ST  

 

TABLE IV DRIVING RELATIONSHIP OF THE BEST ARCHITECTURE 

Sink Source 

L1 L1, L2, L6, L8, OCB output, LB output 

L2 L2, L6, L8, OCB output, LB output 

L6 L1, L2, L6, OCB output, LB output 

L8 L1, L2, L6, L8, OCB output 

ICB Input L1, L2, L8, OCB output, LB output 

TABLE V COMPARISON OF ARCHITECTURE WITH GRB MODEL AND CB-SB MODEL 

Circuit  
Total Routing Area(𝟏𝟎𝟔) Critical Path Delay(ns) Area-Delay Product(𝟏𝟎𝟔) 

CB-SB GRB Ratio CB-SB GRB Ratio CB-SB GRB Ratio 
arm_core 33.68  32.96  -2.1% 12.64  10.08  -20.2% 425.70  332.27  -21.9% 

bgm 64.74  62.57  -3.4% 12.68  10.19  -19.7% 821.06  637.56  -22.3% 
blob_merge 17.68  17.46  -1.3% 6.00  4.36  -27.3% 106.03  76.08  -28.2% 
boundtop 2.17  2.34  7.7% 1.50  1.07  -28.6% 3.25  2.50  -23.1% 

ch_intrinsics 1.80  1.98  10.0% 1.93  1.63  -15.4% 3.47  3.23  -7.0% 
diffeq1 3.84  4.04  5.0% 18.91  17.36  -8.2% 72.66  70.10  -3.5% 
diffeq2 3.84  4.04  5.0% 14.28  12.47  -12.7% 54.90  50.36  -8.3% 

LU8PEEng 70.61  68.36 -3.2% 55.28  49.17  -11.0% 3903.43  3361.44 -13.9% 
LU32PEEng 235.91  225.32  -4.5% 55.56  47.65  -14.2% 13108.01  10736.19  -18.1% 

mcml 217.18  207.61  -4.4% 49.76  40.56  -18.5% 10806.61  8420.49  -22.1% 
mkDelayWorker32B 36.66  35.78  -2.4% 5.51  4.31  -21.8% 202.16  154.30  -23.7% 

mkPktMerge 11.02  11.10  0.8% 3.62  3.27  -9.6% 39.89  36.34  -8.9% 
mkSMAdapter4B 5.41  5.61  3.7% 3.90  3.25  -16.7% 21.08  18.22  -13.6% 

or1200 10.26  9.57  -6.8% 9.85  8.43  -14.4% 101.05  80.63  -20.2% 
raygentop 8.01  8.14  1.5% 4.43  4.18  -5.5% 35.47  34.05  -4.0% 

sha 7.37  7.47  1.4% 8.76  7.66  -12.5% 64.52  57.25  -11.3% 
stereovision0 35.23  34.37  -2.4% 2.29  2.09  -8.6% 80.53  71.83  -10.8% 
stereovision1 33.68  32.96  -2.1% 4.74  4.51  -4.9% 159.67  148.63  -6.9% 
stereovision2 138.33  132.71  -4.1% 12.00  10.43  -13.1% 1659.74  1383.77  -16.6% 
stereovision3 0.54  0.65  20.8% 1.72  1.27  -26.5% 0.93  0.83  -11.2% 

Average 1.0% -15.5% -14.8% 

 The area increases a little because of the difference in 
routing resources of IOs. In the GRB model, each IO has a 
GRB which is the same as LBs. But in the CB-SB model, the 
IOs on the left side and bottom side have a simpler SB 
compared to LBs, while the IOs on the right side and top side 
have no corresponding SBs. So the routing area of IOs in the 
CB-SB model is smaller than the GSB model. For small 
circuits, a large proportion of IOs may result in a larger routing 
area. We can see that in TABLE V, the circuits that increase 
in the area are a few small circuits. And the larger the circuit, 
the greater the area reduction. So the GRB model is better for 
large circuits. Besides, the use of two-level MUXes has a great 
influence on the area, as we discuss in Section B. The output 
sharing of two-level MUXes are adjusted during the 
architecture exploration and achieve a great trade-off between 
flexibility and area according to the area and delay weight we 
set in formula (1). Therefore, all circuits can be routed 
successfully and the routing area does not increase too much. 
The improvement of delay is mainly due to the richer 
connections which have been discussed in Section A. The 
two-level MUXes also has some contribution because it can 
reduce the MUX size. 

We also compare our best architecture with length-4 
architecture at the best area-delay product channel width. 
Different channel widths are tried on a step of 10 and we find 
that the area-delay product of the baseline is minimized when 
W=130. Compared to the CB-SB baseline with W=130, our 

architecture still reduces the critical path delay by 15.6% and 
area-delay product by 8.0%. 

C. Local Subspace Exploration 

The best architecture in global space exploration does not 
include any bent segment. The reason is that the global design 
space is too large to explore and it’s difficult to tell which 
point has a bigger performance boost. The global exploration 
results can be fine-tuned for better results so we explore the 
following subspaces based on the iterative optimization 
method: a) segment distribution without bent pattern; b) 
segment distribution with bent pattern; c) driving relationship; 
d) firstly segment distribution with bent pattern and then 
driving relationship. All these explorations start from the same 
baseline which is generated randomly. Fig.8 shows the best 
improvement of these subspaces exploration compared to the 
CB-SB model with the same channel width as the GRB model. 
The results show that segment distribution without bent 
pattern has a 7.8% improvement in the delay and the 
improvement can be doubled with bent pattern. The segment 
distribution with bent type has a better performance in the area 
but is slightly weaker in delay compared to the driving 
relationship. Fig.9 shows the contribution of different parts to 
the delay improvement. The effect of the driving relationship 
on the delay is as great as the combination of the segment 
distribution and bent pattern. This seems to contradict the 
conclusions of Lin et al. in Figs. 10 and 11 [23]. It is because 
Lin et al. obtain their conclusions by iterating over different 
subspaces, such as the comparison of subspaces b) and d). The 



improvement of the driving relationship shown in d) is based 
on the improvement of segment distribution with bent pattern. 
While our conclusion about the delay contribution is based on 
subspaces a), b) and c), which explore different subspaces 
separately. 

 

Fig.8  Best improvement of subspace exploration 
 

 

Fig.9  Contribution of different factors to delay 
 

The driving relationship has more influence on the area 
because it can change the number and size of MUXes in GRB. 
It tends to reduce delay at the expense of area because we 
focus more on delay and set the coefficient 𝛽  to be much 
larger than 𝛼 in formula (1). So the exploration of the latter 
two subspaces tends to be more about the extremity of delay 
and less about the area. The driving relationship exploration 
based on the best segments can further improve the delay, but 
not by much, which indicates that the exploration has fallen 
into the optimal solution. 

The best segment distribution reported in b) is shown in 
TABLE VI. The channel width for the best architecture 
chosen according to equation (2), W = 2*(1*8+2*8+3*5+3*1 
+5*1+8*2+11*2) = 170. The number of segment types 
increases and there are two kinds of bent segments. The best 
driving relationship for this segment distribution reported in d) 
is shown in 0. L1, L2 and L3-a can connect to ICB inputs and 
they can drive many other segments. Bent segments and long 
segments can only drive themselves or some short segments. 
This is similar to the conclusion mentioned in [25]. We also 
compare the average improvements of different benchmarks 
between our model and some other routing architectures based 
on similar baselines with the same routing architecture, the 
result is shown in TABLE VIII. Our architecture has improved 
significantly in terms of both area and delay. 

TABLE VI THE BEST SEGMENT DISTRIBUTION 

Name Length Number Bent Pattern 

L1 1 8 ST 

L2 2 8 ST 

L3-a 3 5 ST 

L3-b 3 1 (2, CW) 

L5 5 1 (3, CC) 

L8 8 2 ST 

L11 11 2 ST 

 

TABLE VII THE BEST DRIVING RELATIONSHIP OF SUBSPACE 
EXPLORATION 

Sink Source 

L1 L1, L3-a, L8, OCB output, LB output 

L2 L1, L2, L8, OCB output, LB output 

L3-a L1, L2, L3-a, L5, OCB output, LB output 

L3-b L1, L2, L3-a, L3-b, L5, OCB output 

L5 L1, L2, L3-a, L5, OCB output 

L8 L1, L2, L8, L11 

L11 L1, L2, L3-a, L11 

ICB Input L1, L2, L3-a, L5, OCB output, LB output 

 

TABLE VIII THE IMPROVEMENT COMPARISON OF DIFFERENT ROUTING 
ARCHITECTURES 

Name Delay Routing 
Area 

Area-Delay 
Product 

GRB 18.7% 6.4% 23.8% 

GIB[15] 9.5% 1.8% 11.1% 

Bent Pattern[9] 9% 3.2% 10.6% 
Two-level 
MUX[21] 

16.5% -7.8% 14.2% 

 

Ⅵ.    CONCLUSION 

 In this paper, we propose a new routing architecture model, 
GRB for complex FPGAs based on VTR 8.0. Two sets of 
parameters, coarse-grained and fine-grained descriptions, are 
adopted to describe our model. To improve routing 
architecture performance, an exploration platform based on 
the simulated annealing algorithm is developed. The 
optimization result of the global design space exploration 
shows the GRB architecture can achieve an improvement of 
15.5% on the critical path delay and 14.8% on the area-delay 
product on average compared to the CB-SB architecture. After 
some subspace exploration, results show driving relationship 
has a better performance in the delay than segment distribution 
with bent patterns, while the latter one is better in the area-
delay product. The best architecture of subspaces exploration 
can reduce the critical path delay by  18.7% and the area-delay 
product by 23.8%. In the future, we plan to support more 
general commercial routing architectures, optimize the 
exploration platform and find FPGA architectures that are 
better than the 7-Series architecture family[20]. 
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