

 General Routing Architecture Modelling and
Exploration for Modern FPGAs

Jiadong Qian, Yuhang Shen, Kaichuang Shi, Hao Zhou*, Lingli Wang*
State Key Laboratory of ASIC and System.

Fudan University, Shanghai, China
*zhouhao@fudan.edu.cn, llwang@fudan.edu.cn

Abstract—Routing architecture has a significant impact on
the area, critical path delay and power consumption of modern
FPGAs. The most common routing architecture of island-style
FPGAs in academia is the CB-SB model, which is not effective
to model complex routing architectures in modern FPGAs. To
improve the routability and performance of the existing routing
model, we propose a new routing model called General Routing
Block (GRB) to model complex commercial FPGAs. In the
proposed model, all routing resources can be divided into three
modules: general switch block (GSB), input connection block
(ICB) and output connection block (OCB). The GSB and ICB
are extended from the SB and CB with more flexible and richer
connections. The OCB is a new module that provides novel
connections for the LB output pins. We support bent wire
architecture to reduce the delay, and two-level MUXes with
output sharing to achieve a better trade-off between the area
and flexibility. Moreover, to explore the trade-offs of different
design spaces and find better architectures, an architecture
exploration platform based on the simulated annealing
algorithm is proposed to efficiently explore the enormous design
space specified by a set of parameters. The results of global
design space exploration show that the architecture with the
proposed GRB model reduces the critical path delay by 15.5%
and area-delay product by 14.8% compared to the length-4 CB-
SB architecture based on the VTR benchmarks. After further
local subspace explorations, the best architecture can achieve an
18.7% improvement on the critical path delay and a 23.8%
improvement on the area-delay product, which represents a
significant improvement over other routing architectures.

Ⅰ. INTRODUCTION

Field Programmable Gate Array (FPGA) is widely used in
many applications, such as artificial intelligence, automotive,
and communication, etc., because of its great flexibility,
parallelism, low non-recurring engineering(NRE) cost, and
fast time-to-market[1]. Studies have shown that routing
architecture has a great influence on the FPGA area, delay,
and power consumption [1][2]. The most common routing
architecture of island-style FPGA in academia is the CB-SB
model, which includes connection blocks (CBs), switch
blocks (SBs) and routing channels. Based on the CB-SB
model, there have been many studies about routing
architectures, such as routing segments [3]-[5], routing
patterns [6]-[9] and fast interconnections [10][11].

However, the routing architectures of modern commercial
FPGAs are too complex to be modeled by the CB-SB
architecture in VTR 8.0 [12]. Some researchers proposed
different architectures, such as CS-Box [13], GSB [14], GIB
[15], INTB [16] among others [17][18]. But most of them are
still difficult to support commercial FPGA architectures.
Symbiflow [19] solves this problem, but it only supports some
old commercial FPGAs and we need to provide the RR-graph
if we want to extend new commercial FPGA architectures in
Symbiflow. To narrow the gap between academic research
and industrial development, reference [20] developed an

open-source tool to facilitate the analysis of commercial
FPGA routing architectures and applied it to the 7-Series
architecture family. According to reference [20], some
architectures in commercial FPGAs, such as bent wires [9]
and two-level MUXes with output sharing [21], have not yet
been supported in a unified academic model. In addition, there
have been few researches explored the trade-offs of these
architectures. In this paper, we propose a unified FPGA
routing model, GRB, to support these architectures and
improve the routability and performance of existing routing
models. Based on the GRB model, an exploration platform is
proposed to explore the design space combined by these
architectures and find the optimized routing architecture. The
key contributions of our work are as follows:

(1) A routing architecture model called GRB is proposed to
model modern FPGAs. All routing resources in a GRB
can be divided into three modules: general switch block
(GSB), input connection block (ICB) and output
connection block (OCB). Bent patterns [9] and two-level
MUXes with output sharing [21] are supported in the
GRB model. To evaluate the performance of the proposed
model, the FPGA architecture description file and routing
resource graph (RRG) generator in the VTR 8.0 release
[12] are extended. Two sets of parameters, coarse-grained
and fine-grained descriptions, are proposed to explore the
design space.

(2) An exploration platform inspired by TORCH [22][23] is
developed to efficiently explore the enormous design
space of FPGA routing architectures specified by a set of
parameters. The platform which is based on the simulated
annealing algorithm can search for an optimized
combination of different segments and driving
relationships in the architecture automatically. It will
significantly reduce the time required to design the
architectures manually. The area and delay parameters
are determined by the transistor sizing tool COFFE 2 [24],
which has been updated to support the GRB model.

(3) The area and delay of the best architecture reported by the
platform are analyzed with the VTR benchmarks. The
results show that the GRB architecture has an average
improvement of 15.5% on the critical path delay and
14.8% on the area-delay product compared to the length-
4 CB-SB architecture. Besides, in further subspace
explorations, we search the segment distribution, bent
pattern, and driving relationship separately based on the
iterative optimization method. The contribution of the
above subspaces to critical path delay is analyzed, and the
best architecture can achieve 18.7% improvement on the
critical path delay and 23.8% improvement on the area-
delay product, which shows a significant improvement
over other routing architectures.

 In the rest of this paper, Section Ⅱ introduces the common
FPGA routing architecture and some related work. The details
about the GRB model are shown in Section Ⅲ. Section Ⅳ
explains the architecture exploration platform and its
implementation. Finally, the experimental results and
conclusion are shown in Section Ⅴ and Section Ⅵ.

Ⅱ. BACKGROUND AND RELATED WORK

A. FPGA Routing Architecture

The routing architecture of island-style FPGAs based on
the CB-SB model is shown in Fig.1. The basic routing
resources include wire segments and programmable switches.
LBs are surrounded by wire segments on all four sides. W is
the channel width which specifies the number of wire
segments in one channel. The input or output pins of LBs can
connect to some wire segments in the adjacent channel via
CBs. The parameters 𝐹௖,௜௡ 𝑎𝑛𝑑 𝐹௖,௢௨௧ are the input and output
CB flexibilities which specify the fraction of wires in a routing
channel connected by an LB pin. SBs are placed in every
intersection of a horizontal channel and a vertical channel. It
includes some programmable switches which allow wire
segments adjacent to the SB to be connected to others. The
parameter 𝐹௦ is the SB flexibilities which specifies the
number of wires to which each incoming wire can connect.

Fig.1 FPGA CB-SB architecture

B. Related Work

There are many studies about FPGA routing architectures.
Reference [5] studies the influence of segment length
distribution on the FPGA area and delay. The result shows the
combination of length-4 wires and length-8 wires can achieve
the optimal area-delay product. Reference [9] proposes the
bent routing pattern, where the routing segments can span in
both vertical and horizontal channels without passing through
any turning switch. The result shows that bent routing
topology achieves 9% shorter critical path delay and 11%
area-delay product savings on average compared to the
architecture with only straight wires. In addition to routing
segments, there are also researches about neighbor
interconnect, which is a fast connection between adjacent LBs
that can achieve a lower delay. Reference [10] explores the

topologies, quantities, and distances of neighbor interconnect
and the best interconnect achieves a 6.4% improvement in the
critical path delay. However, these researches are based on the
CB-SB model, which is not effective to represent a large
enough optimization space to be explored.

 There are also some researches focusing on different
routing architectures. Kejie Ma et al. [14] propose a GSB
model used in bidirectional routing architecture. It has a larger
exploration space compared to CS-Box [13] and is 24.3%
better than the CB-SB model in terms of the product of the
delay and channel width. Kaichuang Shi et al. [15] propose a
GIB model in unidirectional routing architecture and achieves
8.3% improvement on the critical path delay and 9.9%
improvement on the area-delay product on average compared
to the CB-SB model. However, although these models have
more flexible connections, they still have a similar topology
as the CB-SB model. Reference [16] presents an INTB model
with two-level local MUXes and curve wires to describe
complex interconnect in modern FPGAs. But the architecture
description is not flexible enough and they do not explore
architecture. Reference [20] points out that there have been
few researches explored the trade-offs in complex routing
architectures, which has already existed in commercial FPGA.
To promote the solution to this problem, we propose GRB to
model and explore complex routing architectures. TABLE I
shows the differences between the above architectures and our
work, and other flexible connections mean more flexible and
powerful interconnections than the CB-SB model.

TABLE I THE DIFFERENCES BETWEEN PREVIOUS ARCHITECTURES AND OUR
WORK.

Arch.
Feature

Bent
Pattern

[9]

GIB
[15]

INTB
[16]

Two-level
MUXes

[21]

Our
Work

Bent wire     
Two-level
MUXes

with Output
Sharing

    

OCB     
Other

Flexible
Connections

    

Ⅲ. GRB MODEL

A. GRB Model Overview

The overview of the proposed GRB model is shown in
Fig.2(a)&(b), which is based on tileable FPGAs. Inside each
tile, there are an LB and a GRB which includes all routing
resources in the tile. The LB is connected to the GRB module
via the local interconnections while GRBs are connected by
global wire segments. The input or output pins of LB are not
equivalent. Both straight wires and bent wires [9], which can
decrease the path delay for passing through fewer MUXes, are
supported. Two-level MUXes with output sharing [20], as
shown in Fig.2(d), which can provide more flexibility and
reduce the load on the wire segments without increasing the
area if designed properly [16], are also supported in the GRB
module. Besides, the GRB support near local routing, which
is a fast interconnection of neighboring tiles.

 The GRB module can be further divided into the following
three small modules which are composed of a large number of
MUXes, as shown in Fig.2(c):

 ICB: It is used for the connections of the global
segments to the LB input pins. It also includes partial
feedback connections and neighboring connections
[10]. The feedback connection means the OCB outputs
and LB output pins of this tile can connect to the LB
input pins through ICB. The neighboring connection
means the OCB outputs of adjacent tiles can connect
to LB input pins through ICB.

 OCB: It is used for the connection of the LB output
pins to the global segments. Besides, the OCB outputs
can also be used as feedback connection and neighbor
connection.

 GSB: It contains networks of MUXes connecting its
inputs to outputs, with the number of MUXes along the
path limited to two. GSB is used for the connections
between the global segments. Besides, It also includes
the direct connections from the OCB outputs and LB
output pins to the global segments.

Fig.2 The proposed GRB model

 The detailed routing architecture of the GRB model is
shown in Fig.3. The ICB has similar functions as CB, but with
a richer connection. The routing tracks on four sides of a GSB
can connect to ICB in the GRB model while only one side of
an LB can connect to CB in the CB-SB model. Besides, the
driving source of ICB also includes OCB outputs in this tile,
the output pins of LB in this tile or adjacent tiles, and ICB
outputs in this tile. These connections greatly increase the
flexibility of routing architecture, reduce the number of
programmable switches on the paths and improve the
routability. The OCB enables the LB output pins to be
connected to the GSB either directly or via a MUX. It can
connect more different LB output pins to global wire segments,
which also provides more choices for routing. While the LB

output pins can only connect to SB directly in the CB-SB
model.

 Fig.3(b) shows the detailed connections in GSB. The
connections between wire segments are the same as the
connections in SB. Besides, the wire segments on four sides
are equal for this tile. The output pins of LB and OCB outputs
can connect to segments on all four sides and segments can
connect to ICB input directly. All these connections need at
most one programmable switch while two are required in the
CB-SB model if LB pins and wire segments are not on the
same side of LB. So the GRB model can achieve a better
performance in delay.

(a) Detail routing architecture of ICB/OCB

(b) Detailed routing architecture of GSB

Fig.3 Detailed routing architecture of GRB model

B. Two-level MUXes

 In the GRB model, we present the two-level MUXes with
output sharing [20], which means the outputs of the first-level
MUXes are used as the inputs of multiple second-level
MUXes. Fig.4 shows schematic diagrams of the two-level
MUXes. The advantage of MUXes with output sharing is that
it can reduce the area, which is very important in modern
FPGA design. In Fig.4, outputs A and B both have four sources,
but only four 2:1 MUXes are required while six 2:1 MUXes
are required if there is no output sharing. In addition, it is
mentioned in reference [16] that the two-level MUXes can be
used to reduce the MUX load of the global segments, and in

reference that it can reduce the number of SRAM cells. In
summary, the output sharing of MUXes results in a better
trade-off between the area and architecture flexibility.
Reasonably designed two-level MUXes can provide higher
flexibility without increasing the area so that global segments
could have more paths in GRB to swap or connect to more LB
input pins.

(a) Two-level MUXes without output sharing

(b) Two-level MUXes with output sharing

Fig.4 Example of two-level MUXes

C. VTR Architecture File Enhancement

The architecture file in VTR 8.0 is extended to support the
GRB model. We propose two sets of parameters with
different granularity to describe the design space:

1) Coarse-grained description.
An XML tag called <grb_arch> with the detailed

structure is designed as shown in Fig.5(a), and the related
comments explain the meaning of the attributes. Tag <ocb>,
<icb> and <gsb> describe the connection in OCB, ICB and
GSB. Tag <from> describes the different driving sources
within each module. The attribute type specifies the type of
driving sources. It can be four types: global segments, OCB
outputs, ICB outputs and LB output pins. The attribute
num_foreach specifies the connection number of these
driving sources. The attribute reuse decides whether the
source is connected to the sink with output sharing or not.
Besides, there is a tag <seg_group> which specifies the
driven segment types.

Fig.5(b) shows the connection schematics of tag <gsb> in
Fig.5(a). There are eight L1 tracks where each L1 track is
driven by two L1 tracks, two L2 tracks, one L8 track, and
three clb:q output pins. The first three are connected by two-
level MUXes, and the last one, L8, is connected to L1 directly.
There are six L2 tracks and each L2 track is driven by three
L2 tracks, two L4 tracks, and six OCB outputs. The first one
is connected directly, and the latter two are connected by two-
level MUXes.

(a) Example of tag <gsb_arch>

(b) Connection schematic of tag <gsb >

Fig.5 Coarse-grained description example

2) Fine-grained description.
To support two-level MUXes in ICB and GSB. A detailed

description tag <multistage_muxs> which can describe the
detailed connection of each MUX in one tile is designed as
shown in Fig.6(a). Tag <first_stage> and <second_stage>
describe the first-level MUXes and second-level MUXes.
Tag <mux> is used to describe the detailed connection of one
MUX. Each <from> tag specifies one or more inputs. The
attribute type and name specify the type and name of the
driving source. The attribute from_detail specifies the
detailed driving source with an index number: it consists of
direction and track numbers for segments; while for other
types, it consists of index numbers only. The attribute
mux_name is only used in <second_stage>. It specifies the
name of first-level MUXes which connect to the second-level
MUXes.

Fig.6(b) shows an example of tag <multistage_muxs> and
the corresponding connection schematic, mux-1-0 is the first-
level MUX that has four inputs. E-b0 and N-b0 are the
second-level MUXes. They have five inputs, three of which
are the outputs of the first-level MUXes. The fine-grained

description can be generated by the information described in
Fig.6 or written manually.

(a) Example of tag <multistage_muxs>

(b) Connection schematic

Fig.6 Two-level MUXes connection example

D. RRG generator

To support the GRB model, we rewrite the Routing
Resource Graph (RRG) generator in VPR. The RRG is a
directed graph 𝐺 = (𝑉, 𝐸). V is a set of nodes, each 𝑣௜ ∈ 𝑉
represents a routing track or an LB pin. E is a set of edges,
each 𝑒௜,௝ ∈ 𝐸 represents a connection of a programmable
switch between two nodes 𝑣௜ 𝑎𝑛𝑑 𝑣௝ . Our RRG generator
generates concrete connections per tile according to the
driving relationship or detailed MUX connections specified
by the arch. For two-level MUXes, a low-cost node that
includes no timing cost is used to represent the connection
between first-level MUXes and second-level MUXes. And we
also reserve extension interfaces for the more multilevel
MUXes. Fig.7 shows an example of RRG for two-level

MUXes. The method to support bent segments is the same as
the reference [9]. Each part of bent wires is represented as a
vertex in the RRG. A non-programmable and low-cost edge is
used as the connection between adjacent parts of bent wires,
as shown in Fig. 7(b).

(a) Two-level MUXes example

(b) Bent segment example

Fig.7 Example of RRG

Ⅳ. ARCHITECTURE EXPLORATION PLATFORM

 The design space for the architecture based on our model
is enormous because there are so many subspaces that we can
specify in the architecture, such as the distribution of segments,
driving relationship in GRB and so on. It is impractical to
search these spaces manually. So we propose an architecture
exploration platform that is inspired by TORCH [22][23] to
efficiently explore the design space of routing architectures.
The simulated annealing algorithm is adopted as the overall
framework. Algorithm 1 shows the pseudocode of our
platform.

The platform takes baseline architecture A and benchmark
sets B as inputs. Then it runs the RunBaseline() which calls
VTR to evaluate the area and delay of baseline A with
benchmark sets B. InitArch() generates an architecture
randomly as the initial architecture to be optimized. We can
also specify an architecture artificially. EvaluateCost() makes
multiple calls to VTR in parallel to evaluate the delay and area
of the architecture M on each benchmark and compare with
the baseline, calculating the cost required by simulated
annealing algorithm to evaluate the performance of the
architecture M relative to baseline A. The expression of the
cost function is as follows:

cost(M) =
ଵ

௞
∑ (

௔್,ಾ

௔್,್ೌೞ೐
)ఈ × (

ௗ್,ಾ

ௗ್,್ೌೞ೐
)ఉ௞

௕ୀଵ (1)

where 𝑎௕,ெ, 𝑎௕,௕௔௦௘ , 𝑑௕,ெ and 𝑑௕,௕௔௦௘ is the area and delay of
architecture M and baseline A on benchmark sets B. The
exponent 𝛼, 𝛽 > 0, control the trade-off between area and
delay, k is the number of benchmarks.

 The while loop at line 5 performs the simulated annealing
process to explore architecture. NewSegments() updates the
segments in four dimensions: length, bent pattern, number of
each segment and number of segment types. NewGRB()
updates the driving relationship in ICB and GSB and the MUX
number of OCB. NewArch() generates a new architecture
according to new segments and GRB. Then EvaluateCost() is
called to evaluate the performance of the new architecture.

 The possibility of architecture updating is controlled by
the temperature T, the higher the T, the higher the possibility
of updating and the greater the difference between the two
architectures. As T decreases, the changes of the architecture
will become smaller and smaller, and eventually converge to
a new optimized architecture. Besides, if we only run part of
NewSegments() or NewGRB() in the platform, we can explore
a subspace.

Ⅴ. Experimental Results

A. Baseline Architecture

The parameters of the baseline architecture we used to
compare are shown in TABLE II. The LB includes eight 6-
input non-fracturable LUTs, and the connectivity of the input
crossbar is set to 50% which is reasonable. The channel width
is fixed. Because in the GRB model, the channel width is
uniquely defined according to the number of each segment
and it’s reasonable in real FPGAs. The expression to calculate
the channel width is shown in formula (2), where n is the
number of segment types, 𝑁௞ represents the number of this
segment type, 𝐿௞ represents the length of this segment type.

We multiply it by 2 because we use unidirectional segments,
each of which has two opposite directions.

𝑊 = 2 × ∑ 𝑁௞ × 𝐿௞ ௡
௞ୀଵ (2)

The segment used in baseline architecture is length-4
straight wires with full switchpoints which is proved to
provide the best performance in the unidirectional CB-SB
model [25]. The area and delay parameters for segments and
MUXes in the baseline are extracted from the transistor sizing
tool COFFE 2 [24]. Besides, because COFFE 2 only supports
the CB-SB model, we modified it to get the parameters for
the GRB model. All of the parameters are determined at the
22 nm technology node. The trade-off between area and delay
for COFFE 2 is 3:7 which achieves a great trade-off between
the area and delay in our experiment.

TABLE II PARAMETERS OF BASELINE ARCHITECTURE

LB Size Eight 6-input Non-fracturable LUTs
LB Input Crossbar 50%

DSP Elements 36×36 Fracturable Multipliers
Memories 32Kb Block RAMs

Channel Width Same as the W in the GRB model to be
compared

𝐹௖,௜௡ 0.1
𝐹௖,௢௨௧ 0.1

𝐹௦ 3
Switch Type Wilton

Segments Length-4 straight wires

B. Global Design Space Exploration

We use the platform discussed in Section-Ⅳ to search for
architectures with great performance. The global design
space includes the following parts: 1) segment type and
distribution; 2) bent patterns; 3) driving relationship in GRB.
It takes about 10 days on one machine with Intel(R) Xeon(R)
Gold 6126 CPU @ 2.60GHz to finish the exploration while
one iteration takes about one hour. The segment distribution
and driving relationship of the best architecture reported by
the platform are shown in TABLE III and TABLE IV. The
definition of the bent pattern in TABLE III is the same as [9],
while ST represents the straight type, (n, CC/CW) represents
counter-clockwise or clockwise bend types in n-switchpoint.
The architecture includes 7 length-1 straight wires, 9 length-
2 straight wires, 5 length-6 straight wires, and 2 length-8
straight wires.

According to formula (2), the routing channel width is 142.
L1 and L8 can be driven by all other segments to provide
flexibility for both short segments and long segments. L1 does
not drive L2 and L8 does not drive L6, one possible reason is
that the length is approximately the same and they can drive
ICB input directly. There is no need to add extra flexibility
which may increase the delay.

The improvements of the architecture compared to the
baseline are shown in TABLE V. The routing area reported by
VTR 8.0 depends on the benchmarks because different
benchmarks require different array sizes. For the CB-SB
model, the total routing area includes both the global routing
area and local routing area which equals the area of the
crossbar in LBs. The GRB model achieves local routing in
GSB so there is no crossbar in LBs. The results show that the
architecture based on the GRB model has an average
improvement of 15.6% in the critical path delay and 8.0% in

the area-delay product compared to the CB-SB baseline
architecture.

TABLE III SEGMENT DISTRIBUTION OF THE BEST ARCHITECTURE

Name Length Number Bent Pattern
L1 1 7 ST

L2 2 9 ST
L6 6 5 ST

L8 8 2 ST

TABLE IV DRIVING RELATIONSHIP OF THE BEST ARCHITECTURE

Sink Source

L1 L1, L2, L6, L8, OCB output, LB output

L2 L2, L6, L8, OCB output, LB output

L6 L1, L2, L6, OCB output, LB output

L8 L1, L2, L6, L8, OCB output

ICB Input L1, L2, L8, OCB output, LB output

TABLE V COMPARISON OF ARCHITECTURE WITH GRB MODEL AND CB-SB MODEL

Circuit
Total Routing Area(𝟏𝟎𝟔) Critical Path Delay(ns) Area-Delay Product(𝟏𝟎𝟔)

CB-SB GRB Ratio CB-SB GRB Ratio CB-SB GRB Ratio
arm_core 33.68 32.96 -2.1% 12.64 10.08 -20.2% 425.70 332.27 -21.9%

bgm 64.74 62.57 -3.4% 12.68 10.19 -19.7% 821.06 637.56 -22.3%
blob_merge 17.68 17.46 -1.3% 6.00 4.36 -27.3% 106.03 76.08 -28.2%
boundtop 2.17 2.34 7.7% 1.50 1.07 -28.6% 3.25 2.50 -23.1%

ch_intrinsics 1.80 1.98 10.0% 1.93 1.63 -15.4% 3.47 3.23 -7.0%
diffeq1 3.84 4.04 5.0% 18.91 17.36 -8.2% 72.66 70.10 -3.5%
diffeq2 3.84 4.04 5.0% 14.28 12.47 -12.7% 54.90 50.36 -8.3%

LU8PEEng 70.61 68.36 -3.2% 55.28 49.17 -11.0% 3903.43 3361.44 -13.9%
LU32PEEng 235.91 225.32 -4.5% 55.56 47.65 -14.2% 13108.01 10736.19 -18.1%

mcml 217.18 207.61 -4.4% 49.76 40.56 -18.5% 10806.61 8420.49 -22.1%
mkDelayWorker32B 36.66 35.78 -2.4% 5.51 4.31 -21.8% 202.16 154.30 -23.7%

mkPktMerge 11.02 11.10 0.8% 3.62 3.27 -9.6% 39.89 36.34 -8.9%
mkSMAdapter4B 5.41 5.61 3.7% 3.90 3.25 -16.7% 21.08 18.22 -13.6%

or1200 10.26 9.57 -6.8% 9.85 8.43 -14.4% 101.05 80.63 -20.2%
raygentop 8.01 8.14 1.5% 4.43 4.18 -5.5% 35.47 34.05 -4.0%

sha 7.37 7.47 1.4% 8.76 7.66 -12.5% 64.52 57.25 -11.3%
stereovision0 35.23 34.37 -2.4% 2.29 2.09 -8.6% 80.53 71.83 -10.8%
stereovision1 33.68 32.96 -2.1% 4.74 4.51 -4.9% 159.67 148.63 -6.9%
stereovision2 138.33 132.71 -4.1% 12.00 10.43 -13.1% 1659.74 1383.77 -16.6%
stereovision3 0.54 0.65 20.8% 1.72 1.27 -26.5% 0.93 0.83 -11.2%

Average 1.0% -15.5% -14.8%

 The area increases a little because of the difference in
routing resources of IOs. In the GRB model, each IO has a
GRB which is the same as LBs. But in the CB-SB model, the
IOs on the left side and bottom side have a simpler SB
compared to LBs, while the IOs on the right side and top side
have no corresponding SBs. So the routing area of IOs in the
CB-SB model is smaller than the GSB model. For small
circuits, a large proportion of IOs may result in a larger routing
area. We can see that in TABLE V, the circuits that increase
in the area are a few small circuits. And the larger the circuit,
the greater the area reduction. So the GRB model is better for
large circuits. Besides, the use of two-level MUXes has a great
influence on the area, as we discuss in Section B. The output
sharing of two-level MUXes are adjusted during the
architecture exploration and achieve a great trade-off between
flexibility and area according to the area and delay weight we
set in formula (1). Therefore, all circuits can be routed
successfully and the routing area does not increase too much.
The improvement of delay is mainly due to the richer
connections which have been discussed in Section A. The
two-level MUXes also has some contribution because it can
reduce the MUX size.

We also compare our best architecture with length-4
architecture at the best area-delay product channel width.
Different channel widths are tried on a step of 10 and we find
that the area-delay product of the baseline is minimized when
W=130. Compared to the CB-SB baseline with W=130, our

architecture still reduces the critical path delay by 15.6% and
area-delay product by 8.0%.

C. Local Subspace Exploration

The best architecture in global space exploration does not
include any bent segment. The reason is that the global design
space is too large to explore and it’s difficult to tell which
point has a bigger performance boost. The global exploration
results can be fine-tuned for better results so we explore the
following subspaces based on the iterative optimization
method: a) segment distribution without bent pattern; b)
segment distribution with bent pattern; c) driving relationship;
d) firstly segment distribution with bent pattern and then
driving relationship. All these explorations start from the same
baseline which is generated randomly. Fig.8 shows the best
improvement of these subspaces exploration compared to the
CB-SB model with the same channel width as the GRB model.
The results show that segment distribution without bent
pattern has a 7.8% improvement in the delay and the
improvement can be doubled with bent pattern. The segment
distribution with bent type has a better performance in the area
but is slightly weaker in delay compared to the driving
relationship. Fig.9 shows the contribution of different parts to
the delay improvement. The effect of the driving relationship
on the delay is as great as the combination of the segment
distribution and bent pattern. This seems to contradict the
conclusions of Lin et al. in Figs. 10 and 11 [23]. It is because
Lin et al. obtain their conclusions by iterating over different
subspaces, such as the comparison of subspaces b) and d). The

improvement of the driving relationship shown in d) is based
on the improvement of segment distribution with bent pattern.
While our conclusion about the delay contribution is based on
subspaces a), b) and c), which explore different subspaces
separately.

Fig.8 Best improvement of subspace exploration

Fig.9 Contribution of different factors to delay

The driving relationship has more influence on the area
because it can change the number and size of MUXes in GRB.
It tends to reduce delay at the expense of area because we
focus more on delay and set the coefficient 𝛽 to be much
larger than 𝛼 in formula (1). So the exploration of the latter
two subspaces tends to be more about the extremity of delay
and less about the area. The driving relationship exploration
based on the best segments can further improve the delay, but
not by much, which indicates that the exploration has fallen
into the optimal solution.

The best segment distribution reported in b) is shown in
TABLE VI. The channel width for the best architecture
chosen according to equation (2), W = 2*(1*8+2*8+3*5+3*1
+5*1+8*2+11*2) = 170. The number of segment types
increases and there are two kinds of bent segments. The best
driving relationship for this segment distribution reported in d)
is shown in 0. L1, L2 and L3-a can connect to ICB inputs and
they can drive many other segments. Bent segments and long
segments can only drive themselves or some short segments.
This is similar to the conclusion mentioned in [25]. We also
compare the average improvements of different benchmarks
between our model and some other routing architectures based
on similar baselines with the same routing architecture, the
result is shown in TABLE VIII. Our architecture has improved
significantly in terms of both area and delay.

TABLE VI THE BEST SEGMENT DISTRIBUTION

Name Length Number Bent Pattern

L1 1 8 ST

L2 2 8 ST

L3-a 3 5 ST

L3-b 3 1 (2, CW)

L5 5 1 (3, CC)

L8 8 2 ST

L11 11 2 ST

TABLE VII THE BEST DRIVING RELATIONSHIP OF SUBSPACE
EXPLORATION

Sink Source

L1 L1, L3-a, L8, OCB output, LB output

L2 L1, L2, L8, OCB output, LB output

L3-a L1, L2, L3-a, L5, OCB output, LB output

L3-b L1, L2, L3-a, L3-b, L5, OCB output

L5 L1, L2, L3-a, L5, OCB output

L8 L1, L2, L8, L11

L11 L1, L2, L3-a, L11

ICB Input L1, L2, L3-a, L5, OCB output, LB output

TABLE VIII THE IMPROVEMENT COMPARISON OF DIFFERENT ROUTING
ARCHITECTURES

Name Delay Routing
Area

Area-Delay
Product

GRB 18.7% 6.4% 23.8%

GIB[15] 9.5% 1.8% 11.1%

Bent Pattern[9] 9% 3.2% 10.6%
Two-level
MUX[21]

16.5% -7.8% 14.2%

Ⅵ. CONCLUSION

 In this paper, we propose a new routing architecture model,
GRB for complex FPGAs based on VTR 8.0. Two sets of
parameters, coarse-grained and fine-grained descriptions, are
adopted to describe our model. To improve routing
architecture performance, an exploration platform based on
the simulated annealing algorithm is developed. The
optimization result of the global design space exploration
shows the GRB architecture can achieve an improvement of
15.5% on the critical path delay and 14.8% on the area-delay
product on average compared to the CB-SB architecture. After
some subspace exploration, results show driving relationship
has a better performance in the delay than segment distribution
with bent patterns, while the latter one is better in the area-
delay product. The best architecture of subspaces exploration
can reduce the critical path delay by 18.7% and the area-delay
product by 23.8%. In the future, we plan to support more
general commercial routing architectures, optimize the
exploration platform and find FPGA architectures that are
better than the 7-Series architecture family[20].

ACKNOWLEDGE

 This work is supported by the National Natural Science
Foundation of China under grant 61971143.

REFERENCES
[1] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs. Kluwer Academic Publishers, p.2, 1999.

[2] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
in Proc. ACM/SIGDA 10th Int. Symp. Field-Programmable Gate
Arrays, pp. 21–30, 2006.

[3] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and single-driver
wires in FPGA interconnect,” Proc. - 2004 IEEE Int. Conf. Field-
Programmable Technol. FPT ’04, pp. 41–48, 2004.

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%

seg without
bent

seg with
bent

driving
relationship

seg with
bent +

driving rel.

Im
pr

ov
em

en
t

area delay area-delay

segment
distribution

bent pattern

driving
relationship

[4] F. S. Pourhashemi and M. Saheb Zamani, “Evaluation of FPGA routing
architectures under process variation,” Proc. ACM Gt. Lakes Symp.
VLSI, GLSVLSI, pp. 351–354, 2011.

[5] A. Mishra, N. Jayapalan, H. Rastogi, and T. Agrawal, “Impact of
segmentation distribution on area and delay in FPGA routing
architectures,” Proc. 2013 3rd IEEE Int. Adv. Comput. Conf. IACC
2013, pp. 1595–1599, 2013.

[6] Y. W. Chang, D. F. Wong, and C. K. Wong, “Universal switch modules
for FPGA design,” ACM Trans. Des. Autom. Electron. Syst., vol. 1, no.
1, pp. 80–101, 1996.

[7] X. Tang, E. Giacomin, A. Alacchi and P. Gaillardon, "A Study on
Switch Block Patterns for Tileable FPGA Routing Architectures," 2019
International Conference on Field-Programmable Technology
(ICFPT), Tianjin, China, pp. 247-250, 2019.

[8] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner, and E.
Bozorgzadeh, “HARP: Hard-wired routing pattern FPGAs,”
ACM/SIGDA Int. Symp. F. Program. Gate Arrays - FPGA, pp. 21–29,
2005.

[9] X. Sun, H. Zhou, and L. Wang, “Bent routing pattern for FPGA,” Proc.
- 29th Int. Conf. Field-Programmable Log. Appl. FPL 2019, pp. 9–16,
2019.

[10] A. Roopchansingh and J. Rose, “Nearest neighbour interconnect
architecture in deep submicron FPGAs,” Proc. Cust. Integr. Circuits
Conf., pp. 59–62, 2002.

[11] S. Nikolić, G. Zgheib, and P. Ienne, “Straight to the point: Intra- and
intercluster LUT connections to mitigate the delay of programmable
routing,” ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays,
pp. 150–160, 2020.

[12] K. E. Murray et al., “VTR 8: High-performance CAD and
Customizable FPGA Architecture Modelling,” ACM Trans.
Reconfigurable Technol. Syst., vol. 13, no. 2, 2020.

[13] C. L. Zhou, R. C. C. Cheung, and Y. L. Wu, “What if merging
connection and switch boxes -an experimental revisit on FPGA
architectures,” Int. Conf. Commun. Circuits Syst., vol. 2, no. May 2014,
pp. 1295–1299, 2004.

[14] K. Ma, L. Wang, X. Zhou, S. X. D. Tan, and J. Tong, “General switch
box modeling and optimization for FPGA routing architectures,” Proc.
- 2010 Int. Conf. Field-Programmable Technol. FPT’10, pp. 320–323,
2010.

[15] K. Shi, H. Zhou, X. Zhou, and L. Wang, "GIB: A Novel Unidirectional
Interconnection Architecture for FPGA," 2020 International
Conference on Field-Programmable Technology (ICFPT), Maui, HI,
USA, 2020, pp. 174-181.

[16] C. Hu, Q. Duan, P. Lu, W. Liu, J. Wang, and J. Lai, “A tile-based
interconnect model for FPGA architecture exploration,” ACM Gt.
Lakes Symp. VLSI, GLSVLSI, no. c, pp. 113–118, 2020.

[17] Y. Ma and M. Lin, "Collaborative Routing Architecture for FPGA,"
IEEE International Symposium on Circuits and Systems, pp. 3700-
3703, 2007.

[18] Z. Qi et al., "Timing Model For GRM FPGA Based Routing," 14th
IEEE International Conference on Solid-State and Integrated Circuit
Technology (ICSICT), pp. 1-3, 2018.

[19] K. E. Murray, M. A. Elgammal, V. Betz, T. Ansell, K. Rothman and A.
Comodi, "SymbiFlow and VPR: An Open-Source Design Flow for
Commercial and Novel FPGAs," in IEEE Micro, vol. 40, no. 4, pp. 49-
57, 1 July-Aug. 2020.

[20] Morten B. Petersen, Stefan Nikolić, and Mirjana Stojilović.
“NetCracker: A Peek into the Routing Architecture of Xilinx 7-Series
FPGAs,” in Proc. ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp.11–22, 2021.

[21] Y. Shen, J. Qian, K. Shi, L. Wang, and H. Zhou, “Two-level MUX
Design and Exploration in FPGA Routing Architecture.” 31th Int. Conf.
Field-Programmable Log. Appl., pp. 234–241, 2021.

[22] M. Lin and A. El Gamal, “TORCH: A design tool for routing channel
segmentation in FPGAs,” 16th international ACM/SIGDA Symposium
on Field Programmable Gate Arrays., pp. 131–138, 2008.

[23] Lin, J. Wawrzynek and A. E. Gamal, "Exploring FPGA Routing
Architecture Stochastically," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 10, pp. 1509-
1522, 2010.

[24] S. Yazdanshenas and V. Betz, “COFFE 2: Automatic modelling and
optimization of complex and heterogeneous FPGA architectures,”
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 1, p. 3, 2019.

[25] O. Petelin and V. Betz, “The speed of diversity: Exploring complex
FPGA routing topologies for the global metal layer,” FPL 2016 - 26th
Int. Conf. Field-Programmable Log. Appl., pp. 1–10, 2016.

