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Field Programmable Gate Arrays (FPGAs) are widely used because of the superiority in lexibility and lower non-recurring
engineering cost. How to optimize the routing architecture is a key problem for FPGA architects because it has a large impact
on the FPGA area, delay and routability. In academia, the routing architecture is mainly based on the connection blocks (CBs)
and switch blocks (SBs), while most researches have focused on the SB architectures, such as Wilton, Universal and Disjoint
SB patterns. In this paper, we propose a novel unidirectional routing architecture, general interconnection block (GIB) to
improve the FPGA performance. With GIB architecture, logic block (LB) pins can directly connect with the adjacent GIBs
without programmable switches. Inside a GIB, LB pins can connect to the routing channel tracks on the four sides of a GIB. In
particular, the logic pins from diferent neighboring LBs that connect to the same GIB can connect with each other with only
one programmable switch. Besides, we enhance VTR to support GIB with bent wires and develop a searching framework base
on simulated annealing algorithm to search for a near-optimal distribution of wire types. We evaluate the GIB architecture on
VTR 8 with the provided benchmark circuits. The experimental results show that the GIB architecture with length-4 wires
can achieve 9.5% improvement on the critical path delay and 11.1% improvement on the area-delay product compared to the
VTR CB-SB architecture with length-4 wires. After exploring mixed wire types, the optimized GIB architecture can further
improve the delay by 16.4% and area-delay product by 17.1% compared to the CB-SB architecture with length-4 wires.

CCS Concepts: · Hardware→ Reconigurable logic and FPGAs; Programmable interconnect; Physical design (EDA).

Additional Key Words and Phrases: routing architecture, connection block, switch block

1 INTRODUCTION

FPGAs are widely used due to low non-recurring engineering cost, fast time-to-market and their superiority in
lexibility and reconigurability. However, the lexibility of FPGAs comes at the cost of area, delay and power
consumption when designs are implemented in FPGAs compared to application-speciic integrated circuits (ASICs)
[18]. The lexibility heavily relies on the programmable routing architectures, which consist of wire segments and
programmable switches. The routing architecture has a great impact on the area, delay and routability [15][16].
Experimental results 1 show that the routing area accounts for about 52% of the total area and the global routing
delay accounts for about 55% of the critical path delay. So how to optimize the interconnect architecture is a
top question for FPGA architects. Besides, interconnect RC delay has increased rapidly with the process scaling.
Despite that the wire distances shrink and transistor delay decreases, total delay actually increases because wire
cross-sectional area shrinks quadratically with more advanced process nodes [29].

∗Corresponding author.
1The area and delay parameters are extracted from COFFE 2 [50] at 22 nm technology node, the LB local interconnect is half-populated and
the wire segments are all length-4. The benchmarks we use are VTR benchmarks [30] and the results are reported by VTR.
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In academic researches, the routing architecture is mainly based on the CBs and SBs [2][10], where CBs are
used to connect LB pins with routing channel tracks while SBs are used to connect horizontal and vertical tracks.
In the early years, most researches focused on the SB design to improve the performance and routability, such as
Wilton [49], Universal [4] and Disjoint which is also known as Subset SB pattern [21]. References [51][31] propose
CS-Box and GSB architectures respectively which rely on bidirectional wires to improve the FPGA performance
instead of the CB-SB architecture. In this paper, we propose a novel unidirectional interconnection to explore the
routing architecture eiciency. This paper is an extension version of [43]. Our contributions include:

• We propose a novel unidirectional interconnection architecture, GIB. An LB can connect to four adjacent
GIBs directly and a GIB has four adjacent LBs. Both LB input and output pins can directly connect to
the adjacent GIB without programmable switches. Inside a GIB, LB pins and wire segments can connect
with each other lexibly. An LB pin can connect to the routing channel tracks on the four sides of a GIB,
while an LB pin can connect to one adjacent channel only in the CB-SB architecture. In addition, the pins
from diferent neighboring LBs that connect to the same GIB can connect with each other with only one
programmable switch.

• To further improve GIB architecture, we also enhance VTR to support bent wires which can achieve
great improvement in delay in CB-SB architecture. Besides, we develop a searching framework based on
simulated annealing algorithm to search for an near-optimal distribution of wire types which is similar to
[28].

• In order to evaluate the performance of GIB architecture, we enhance the architecture description format
and the Routing Resource Graph (RRG) generator in the latest VTR 8 [36]. We evaluate the performance of
GIB architecture based on the area and delay parameters extracted from COFFE 2 [50] with VTR benchmarks
[30]. Experimental results show that GIB architecture with all length-4 wires can improve the critical
path delay by 8.3% and the area-delay product by 9.9% on average compared to CB-SB architecture with
equivalent fc and fs values. After exploring diferent fc and fs values, GIB architecture can improve the
critical path delay by 9.5% and achieve area-delay product savings by 11.1% on average. In addition, we
evaluate the GIB architecture with bent wires and CB-SB architecture, results show that the GIB architecture
with bent wires can achieve greater area-delay product improvement than GIB architecture with straight
wires only. We also explore the GIB architecture with mixed wire types. Experimental results show that
the optimized architecture can further improve the critical path delay by 16.4% and the area-delay product
by 17.1% on average compared to the CB-SB architecture with length-4 wires.

The rest of this paper is organized as follows. Section 2 introduces the academic CB-SB routing architecture and
the related work. The GIB architecture is proposed in Section 3. Section 4 gives the GIB architecture with bent
wires and the algorithm enhancement and Section 5 introduces a searching framework for exploring mixed wire
types. Section 6 presents the experimental results compared with the CB-SB architecture and the results of the
searching framework. Section 7 concludes this paper with the future work.

2 BACKGROUND AND RELATED WORK

2.1 FPGA routing architecture

The modern island-style FPGA is composed of an array of LBs (or memory, DSP block) which are connected with
routing channels through programmable switches as shown in Fig. 1. Most of modern FPGAs have unidirectional
routing architectures which are mux based [3]. The routing channel width is described by W. The wire length L

is deined as the number of LBs that the wire spans. The LB pins connect to channel wire segments via CBs. The
horizontal and vertical wires can be interconnected with programmable switches inside SBs. CB lexibility is
described by Fc which includes Fc,in and Fc,out , and SB lexibility is represented by Fs . The value of Fc,in and
Fc,out deine the fraction of wires in routing channels that an LB input and ouput pin can connect to respectively,
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while Fs deines the number of other wires to which an incoming wire can connect inside an SB [2] as shown in
Fig. 2. These connections are all controlled by programmable switches which take up most of the delay and area.
Hence, reducing the number of programmable switches on the critical path can improve the FPGA performance.
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Fig. 1. Island-style FPGA architecture.

2.2 VTR platform

In this paper, the platform to explore the GIB architecture is VTR [36], which is an open-source framework to
conduct FPGA architecture and CAD algorithm research. Currently, VTR is based on CB-SB routing architecture
as shown in Fig. 2. The input pins and output pins are represented by black and red circles respectively. As
unidirectional routing has only one driver per wire, the SB and output connection block are combined. The output
pins can connect to the adjacent routing channel tracks through SB muxes directly. Horizontal and vertical tracks
are connected with each other through SB muxes as well. The input pins can connect to the adjacent routing
channel tracks through CB muxes.

The placement problem is to map a netlist of logic blocks (IOs or other macro blocks) onto their legal locations
in an FPGA and attempt to minimize the wirelength and critical path delay. The placement algorithm in VTR is
timing-driven based on simulated annealing [32]. In timing-driven mode, a delay look-up matrix is calculated
to establish the delay between two blocks which are distance apart, then the timing analysis can be performed
during FPGA placement. The router in VTR will be called to perform the routing between the two blocks.
The routing problem is to assign each net to wire segments and switches in an FPGA to route all the signals

successfully while minimizing the wirelength and critical path delay. VTR 8 uses a timing-driven FPGA router [37]
which is based upon the PathFinder negotiated-based algorithm [34]. The router uses a A*-like search algorithm

to search for the paths from a source to the corresponding sink in the routing resource graph. The cost of a node
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Fig. 2. The CB-SB routing architecture.

n is expressed by (1).
Cost(n) = Cprev (n) + α ·Cexp (n) (1)

Cprev (n) is the sum of the cost from the source to the current node, whileCexp (n) is the expected cost from the
current node to the sink, and α is a weight factor. The router lookahead in VTR uses an undirected Djikastra-based
search to quickly proile a large number of diferent routes through the routing resource graph, and estimates the
cost of reaching the target sink through the current node being explored accurately [37]. The lookahead stores a
cost table for each source wire type and orientation.

2.3 Related work

The routing architecture has a great impact on FPGA routability and performance. Routing accounts for more than
50% of the area and critical path delay [2]. Academic researchers have focused on the SB design to improve the
routing architecture in the past several decades. There are several popular SB patterns such as Wilton, Universal
and Disjoint which are developed for length-1 bidirectional architecture. Then, several SB designs focus on
optimizing connections of wire segments that span more than one LBs, such as the Imran [33] and shifty [22] SB
patterns. Reference [46] proposes a new switch box pattern for tileable FPGAs that achieves 12% improvement
in the minimum routable channel width and 2% improvement in area-delay product. In [20], G. Lemieux et al.
explore the use of sparse crossbars between the LB inputs and LUT inputs, and experimental results show that
the sparse crossbars can reduce area by 10%-18% with no degradation to critical path delay. W. feng et al. [11]
propose input interconnect block (IIB) which can connect signals from wire segments and LB feedbacks to LUT
inputs. Experimental results show that 2 level IIBs can achieve big area savings with no routability overhead.
Reference [51] proposes Connection-Switch Box (CS-Box) where CB and SB are simply combined. In CS-Box,
an LB pin can connect to the wire segments on the CS-Box sides except for the side it belongs to. Experimental
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results show that the number of programmable switches decreases by 11.81% at the cost of small increasing in the
minimum channel width and the critical path delay. Reference [31] proposes a similar architecture, the general
switch box (GSB), where an LB pin can connect to the wire segments on the four sides which can achieve better
lexibility than CS-Box. The results show better improvement in delay with a small reduction in routing switches.
Both CS-Box and GSB rely on bidirectional wires with tristate drivers which are not eicient in modern FPGAs.
Experimental results show the unidirectional wiring can achieve 32% area-delay product savings compared to the
bidirectional wiring [19]. Besides, unidirectional routing architecture consumes less energy and power in most
instances than bidirectional architecture [14]. O. Mutukuda et al. [38] explore the efect of multi-bit connections
using unidirectional routing on FPGA area eiciency and results show that unidirectional multi-bit routing
architectures can achieve 8.6% reduction compared to the conventional routing architecture. Recently, Hu et
al. [13] propose a tile-based interconnect model INTB to describe complex interconnect, like curve wires and
two-level local muxes which cannot be described in VTR CB-SB model, but play an important role in interconnect
performance. Routing architecture is also well designed in commercial FPGAs, such as general routing matrix
(GRM) in Xilinx Virtex-5 Family which provides an array of routing switches between each internal component
[35]. Each programmable element is tied to one GRM to improve the FPGA performance. In [41], Petersen et
al. develop NetCracker, a lexible framework for extracting the characteristics of FPGA routing architectures
and analyzing the routing network statistically. In addition, they describe and analyze the routing architecture
of Xilinx 7-Series FPGAs in detail, including the routing channel width, all the wire-to-wire connections and
CLB connections which have a large diference on the CB-SB architecture. The routing architecture is also well
described in Intel Stratix family FPGAs [23ś27].
There are several papers focusing on the wire segment patterns and channel segmentation design. Betz et

al. [1] explore the best distribution of routing segment lengths and the best mix of pass transistor and tri-state
bufer routing switches through an experimental method. TORCH [28] uses a stochastic method to quickly locate
near-optimal solutions in designing FPGA channel segmentation and switch patterning without exhaustively
enumerating all design points. To improve the FPGA performance, references [44, 48] propose a hard-wired
routing pattern to reduce the number of programmable switches and achieves great improvement in delay, area and
power dissipation. Reference [6] presents an architectural exploration of two diagonal tracks in FPGAs in addition
to the vertical and horizontal tracks and achieves good improvement in the routing channel width and delay at
the cost of area because of the added switch count, and more loading of tracks. Recently, reference [45] proposes
a bent routing pattern based on VTR to enhance the routing architecture which can achieve 11% area-delay
product savings. Reference [42] proposes the nearest neighbor interconnect architecture where direct connections
are used between two LBs, bypassing all the intermediate routing switches and achieves 6.4% improvement in
performance. Reference [39] enhances classical FPGA architecture with direct connections between intra- and
intercluster LUTs to mitigate the delay of programmable routing and achieve 2.77% improvement in the critical
path delay. In commercial FPGAs, Xilinx’s Virtex-5 family implements a new diagonally-symmetrical interconnect
architecture instead of the traditional wire segments [35]. In Versal architecture, a harden NoC is implemented
as a separate level of interconnect to improve on the eiciency of bit level interconnect and a dedicated local
interconnect is designed to support more versatile intra-CLB connectivity [12]. In Intel’s Arria 10 FPGA [47], to
improve the long line utilization these are made bi-directional via tri-stated driver input muxes (DIMs) replacing
the direct-drive wires in most preceding devices. A highly pipelined routing architecture is proposed to address
the problem that the RC delay per physical distance increases as the process geometry shrinks and fast output
pins are added, connecting the LUT outputs directly to the routing in Intel’s Agilex FPGAs [8].
This paper is largely inspired by [51][31]. LB pins and wire segments can connect with each other lexibly

inside a GIB. To the best of our knowledge, there is no academic paper applying similar ideas to the unidirectional
routing architecture in modern FPGAs. Besides, mixed wire types including straight and bent wires [45] are
explored to make the GIB architecture perform better.
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3 GIB ROUTING ARCHITECTURE

In this section, we propose the GIB architecture as shown in Fig. 3, where an LB can connect to four adjacent
GIBs without programmable switches and a GIB has four adjacent LBs. Inside a GIB, LB pins and wire segments
can connect with each other with signiicant lexibility improvement. In addition, three parameters are deined to
model the GIB architecture.

LB LB

LBLB

LB

LB

LB LBLB

GIB

GIB

GIB

GIB

Fig. 3. GIB architecture.

3.1 GIB architecture

In GIB architecture, an LB pin can connect to the routing channel tracks on the four sides of a GIB while an LB
pin can only connect to the one adjacent routing channel in classical CB-SB architecture. In the latest VTR 8, the
pin location speciications are enhanced to allow LB pins to access both horizontal and vertical routing wires by
creating two physically equivalent pins for each logical pin. In GIB architecture, each LB can connect to four
adjacent GIBs and each LB can connect to more routing channels at diferent locations. Besides, output pins and
input pins can connect with each other inside a GIB with only one programmable switch. In classical CB-SB
architecture, output pins need to connect to the wire segments through SB muxes irstly, then connect to input
pins through CB muxes. These connections between output pins and input pins are called neighbor interconnects
below. The neighbor interconnects are similar to the direct link interconnects in Stratix IV FPGAs which allows
the logic array block (LAB) to drive into the local interconnect of its neighbors [9]. In the latest VTR 8, it uses
<direct> tag in the FPGA architecture description ile to describe a dedicated connection between two block pins,
such as carry chains. In this paper, we use a parameterized approach to describe the neighbor interconnects in
GIB architecture which will be discussed in Section 3.3. A comparison of classical CB-SB and GIB architecture is
shown in Fig. 4. Wire segments are denoted by blue circles while input pins and output pins are denoted by black
circles and red circles respectively. Neighbor interconnects are shown in red lines in Fig. 4 (b). It can be seen
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that GIB architecture can achieve much more routing lexibility than the CB-SB architecture. The wire segment
connections between each other are not shown because they have the same deinitions in CB-SB architecture
and GIB architecture.

(a) (b)

Fig. 4. Comparison of CB-SB and GIB architecture, (a) CB-SB architecture and (b) GIB architecture.

A

CB SB

B

SB

SB

CB

(a)

A

B

GIB

GIB

GIB

(b)

Fig. 5. The routing path compared CB-SB with GIB architecture, (a) CB-SB architecture and (b) GIB architecture.

The routing path generally starts from an LB output pin, and terminates at an LB input pin. In CB-SB architecture,
an LB output pin passes through programmable switches in SBs, which eventually connects to LB input pins or
IOs through CBs. With GIB architecture, LB pins can connect to the routing channel tracks on the four sides of a
GIB through programmable switches and even connect to other LB pins with neighbor interconnects inside a
GIB. Hence, GIB architecture can possibly reduce the number of programmable switches on the critical path.
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As shown in Fig. 5 (a), an LB output pin connects to a target LB input pin through two SB muxes and one CB
mux. With the GIB routing architecture as shown in Fig. 5 (b), one bufered mux can be saved. Through reducing
the number of the programmable switches on the critical path, delay can be reduced. Evidence shows that the
number of segments (switches), instead of wirelength, used by a net is the most dominating factor in determining
routing delay in an FPGA [5]. We can also compute the interconnect delay approximatively in Fig. 5 using Elmore
delay model in VTR. Assuming that the delay of LB pin connects to GIB is approximate to one length-1 wire, the
net delay of Fig. 5 can be calculated in (2) and (3).

TCB−SB = 2 ·TSB_mux +TCB_mux + 1.5 · Rmetal ·CL + 2 · Rswitch ·CL (2)

TGIB = TGIB_smux +TGIB_imux + 1.5 · Rmetal ·CL + Rswitch ·CL (3)

TCB−SB −TGIB = TSB_mux + Rswitch ·CL (4)

TCB_mux and TSB_mux are the delays of the signal propagates through an SB mux and a CB mux respectively.
TGIB_smux and TGIB_imux are the delay of the signal propagates through the driving mux of a wire segment and
the mux of an input pin respectively. Assuming that TSB_mux = TGIB_smux , TCB_mux = TGIB_imux , Rmetal and
Rswitch are the resistance per unit length of this wire segment and the resistance of the switch. CL gives the total
capacitance (metal plus parasitic capacitance) of the wire segment. Obviously, the delay in CB-SB is longer than
that in GIB from (4).

3.2 GIB architecture enhanced in VTR

To model GIB architecture in VTR [14], we enhance the FPGA architecture description format. The connections
in GIB can be divided into three types:

1. The connections between LB pins and wire segments,
2. The connections between diferent wire segments,
3. The connections between LB output pins and LB input pins.
To describe the above GIB connections, three parameters are deined accordingly, fc, fs and fn: fc deines the

fraction of wire segments in routing channels that an LB pin can connect to; fs deines the number of other
wires that a wire can connect to; fn deines the number of input pins that an output pin can connect to through
neighbor interconnects inside a GIB.

As shown in Fig. 6, we enhance the fc tag in the XML architecture description format 2. For every tile, we set
four fc values for LB input pins and four fc values for LB output pins which correspond to four sides in a GIB. For
an LB input pin, each of four fc values corresponds to the routing channel tracks that a pin can connect to one
side of the GIB model. It can connect to diferent unidirectional wire pairs modeled by VTR as shown in Fig. 7 (a),
where each pair corresponds to two wire segments with opposite directions. The 1st side is deined as the side
that the pin belongs to. And the 2nd, 3rd and 4th sides correspond to the opposite side, the left side and the right
side respectively as shown in Fig. 7. For LB output pins, they can only connect to those wires that go out of the
GIB because unidirectional wires can only be driven in the start point as shown in Fig. 7 (b). So, the connected
routing channel tracks are the half of fc values. For symmetry, the irst and the second fc values have to be the
same. So are the third and the fourth fc values. Supposing the value of Fc is set to 0.1 for both input pins and
output pins in CB-SB architecture, fc values from four sides should add up to 0.1 for input pins and 0.2 for output
pins in GIB architecture to achieve the equivalent pins lexibility. The fs value deines the number of other wires
that a wire can connect to inside the GIBs which is similar to the Fs in CB-SB architecture. Each wire segment

2https://github.com/shikc/GIB_xml.
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can connect to three other wire segments when the value of fs is set to 3. The value of fn is set to 3 which means
an LB output pin can connect to three adjacent LB input pins inside a GIB through neighbor interconnects. It will
be described in detail in Section 3.3.

<! - - fc value is divided into four parts, corresponding to four GIB sides respectively - ->
<fc in_type="frac" in_val="fc_in1 fc_in2 fc_in3 fc_in4" out_type="frac" out_val="fc_out1 fc_out2 fc_out3
fc_out4"/>
<! - - fn value deines the number of connections between output pins and input pins through neighbor
interconnect - ->
<neighbor_interconnect fn=3 />

Fig. 6. Example of enhanced XML tags for fc and fn values.

1

3

2

4

1

3

2

4

(a) (b)

Fig. 7. An example of LB pins connections in GIB, (a) for input pins and (b) for output pins.

3.3 Neighbor interconnect

To improve GIB architecture, the neighbor interconnects are added which can be described by fn. The neighbor
interconnects are similar to the direct link interconnects in Stratix IV FPGAs [9]. The radius [42] is deined to
represent the distance of two LBs that connect with each other through neighbor interconnects. Notice that the
radius between two diagonal LBs is also deined as 1. For example, the radius between the LB in the upper left
corner and the LB in the bottom right corner in Fig. 8 is 1. To illustrate the advantage of neighbor interconnects,
we run the VTR low with the provided Stratix IV-like FPGA architecture and benchmarks. Then, the percentage
of net connections with a radius of 1 is counted as shown in Table 1. where ∆x and ∆y stand for the distances
between the source node and sink node in the x and y directions respectively. Experimental results show that the
number of net connections with a radius of 1 account for 28.7% of the whole net connections on average. These
nets connections can be connected through neighbor interconnects in GIB architecture instead of wire segments.
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LB

LBLB

LB

Fig. 8. Neighbor connects in GIB architecture.

Besides, the percentage of the inter-cluster delay that the radius is 1 in the total critical path delay is counted as
shown in Table 1. Experimental results show that the inter-cluster delay that the radius is 1 accounts for 11.4%
of the critical path delay on average. With neighbor interconnects, the critical path delay can be improved by
reducing the programmable switch number.
We specify that an LB output pin can connect to three adjacent LB input pins which come from three LBs

as shown in Fig. 8. These three input pins are located in diferent sides of the GIB and they are from diferent
LBs. These pins are connected through bufered muxes. With these neighbor interconnects, an output pin can
connect to three adjacent LB input pins with only one mux without passing through any wire segment. It can
save two programmable switches compared with the CB-SB architecture. Hence, the critical path delay can be
well reduced. However, too many neighbor interconnects will bring extra area cost and redundancy because LB
input pins are logically equivalent with crossbar. Hence, we only set fn = 3 for an LB output pin.

Table 1. Percentage of net connections and inter-cluster delay with radius = 1.

(∆x ,∆y)
percentage with radius = 1

net connections inter-cluster delay

(1, 0) 8.90% 2.80%
(0, 1) 10.50% 4.20%
(1, 1) 9.30% 4.40%

Sum 28.70% 11.40%

3.4 CB-SB modeling in GIB

GIB architecture can be simpliied as classical CB-SB architecture. When the irst fc value is set to non-zero and
the other three fc values are set to zero in the enhanced XML tags as shown in Fig. 6, the pin can only connect to
one side which it belongs to as shown in Fig. 9. Besides, the fn value is set to 0 which means there is no neighbor
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Fig. 9. CB-SB modelling in GIB.

interconnect. Under this parameter setting, as far as the routing architecture connections are concerned, GIB
architecture and classical CB-SB architecture are equivalent.

LBLB LB LB

LBLB LB LB

LBLB LB LB

LBLB LB LB

(a) (b)

Fig. 10. Straight and bent wires in FPGA architecture with length-2, (a)straight wires, (b) bent wires.

4 GIB WITH BENT WIRES

4.1 Bent (Diagonal) wires

To explore the GIB architecture with more complex interconnects, we enhance VTR to support bent wires [45]
which are also called diagonal wires in Xilinx FPGAs [35]. Experimental results have shown that bent wires
can achieve great area-delay product savings [45]. Each length-L wire segment contains a start point, (L − 1)
middle points and an end point. We use {CC, CW } to describe the bent types at each middle point of the wire
segment, where CC represents the counterclockwise type and CW represents the clockwise type. Besides, ST is
used to describe the straight type. For instance, <CC> can be used to describe the length-2 bent wires in Fig. 10
(b). Typically, we stagger the starting and ending points of the wire segments whose length is greater than 1 so
that each LB has the chance to connect to the beginning of a wire. Then, the routing tile can be replicated to form
the whole FPGA routing fabric. A duplicable group of length-L wires is the smallest unit in the staggering loop
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Central block

1 hop

2 hops

3 hops

(a) (b)

Fig. 11. The hops distribution in CB-SB architecture, (a) with length-4 straight wires, (b) with length-4 bent wires.

Central block

0 hop

1 hop

2 hops

3 hops

(a) (b)

Fig. 12. The hops distribution in GIB architecture, (a) with length-4 straight wires, (b) with length-4 bent wires.

and consists of 2L tracks. Fig. 10 (a) shows a duplicable group of length-2 straight wires, and Fig. 10 (b) shows
a duplicable group of length-2 bent wires. Other details about bent wires can be found in [45]. Fig. 11 (a) and
(b) show the CB-SB routing architecture with length-4 straight wires and the CB-SB routing architecture with
length-4 bent wires respectively. The number of hops means the number of wire segments used to connect to
two LBs. Fig. 12 (a) and (b) show the GIB architecture with length-4 straight wires and the GIB architecture with
length-4 bent wires respectively. GIB architecture makes more LBs accessible with the same number of hops.
Besides, some LBs can be reached with 0 hop from the central LB, this is because of the existence of neighbor
interconnects. Table 2 shows the exact number of LBs that can be reached from the central LB with diferent
hops in CB-SB and GIB routing architecture.
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Table 2. The routing resources compared GIB with CB-SB architecture.

Hops

Number of LBs reachable with length-4 wires

CB-SB GIB

straight wires bent wires straight wires bent wires

0 0 0 8 8
1 32 36 48 72
2 84 104 112 120
3 164 168 176 200

Total 280 308 344 400

4.2 Connection enhancement

In this paper, we still use SB to describe the wire-to-wire connections in GIB. The commonly used SB patterns
contain Wilton, Disjoint and Universal as we mentioned earlier in this paper. Wilton is the most eicient for
single-length routing architectures. As we enhance VTR to support GIB and bent wires, the SB pattern needs to
be optimized. Firstly, the connections between diferent wires need to be adjusted because of the appearance
of bent wires. Fig. 13 shows the modiied Wilton SB pattern for multi-length wires in VTR 8. The solid lines
stand for the wire segments that pass through the SB and the dashed lines denote the programmable switches in
SB. In classical routing architecture with straight wires, for all segments that start/end at that switch block, the
connections follow the Wilton SB pattern as Fig. 13 (a) shows. For segments that pass through the switch block
that can also turn there, the Wilton SB pattern cannot be used because unidirectional wire segments can only be
driven at the start point. So the connections are assigned to starting segments following a round-robin scheme to
balance mux size in VTR as Fig. 13 (b) shows.

In the routing architecture with bent wires, the connections also follow the Wilton SB pattern for all segments
that start/end at that switch block as Fig. 14 (a) shows. For segments that pass through the SB, the connections
are assigned to starting segments following a round-robin scheme which is similar to how VTR does. However,
due to the appearance of bent wires, the connections have changed a lot as Fig. 14 (b) shows.

(a) (b)

Fig. 13. The SB patern with straight wire segments, (a) ending segments to starting segments, (b) passing segments to

starting segments.
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(a) (b)

Fig. 14. The SB patern with bent wire segments, (a) ending segments to starting segments, (b) passing segments to starting

segments.
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Fig. 15. The redundant connections in GIB.

Besides, because each LB pin can connect to the wire segments on the four sides of the GIB, there may exists
some redundant connections as shown in Fig. 15 which may cause the loss of routability. The LB input pin can
connect to track 4 on the bottom side and track 4 on the right side of the GIB through the mux. However, track
4 on the bottom side and track 4 on the right side can connect with each other through SB mux which means
there exists one redundant connection of the pin. To solve the problem, we enhance the connections between the
LB pins and the wire segments. When creating the pin-to-wire connections, we make the algorithm aware of
the SB patterns. The connections between the pin and the wire segments on the 1st side follow the established
way in VPR which uses a round-robin scheme to keep the track diversity. Then, the algorithm will also use a
round-robin scheme to create the connections between the pin and the wire segments on the 2nd side. If the pin
connects to the wire segments on the 2nd side which can connect to the wire segments on the 1st side through
SB and the wire segments on the 1st side have been connected by the pin, the pin will reject this connections and
connect to a diferent unidirectional wire pair. Similarly, the pin connects to the wire segments on the 3rd side
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which cannot connect to the connected wire segments of the pin on the 1st and 2nd side through SB. We use the
same method to connect the pin with the wire segments on the 4th side.

LB LB

a

b

c

d

e f

h

g

i j

b

a

d e g j

h c

(a) (b)

Fig. 16. Routing Resource Graph, (a) GIB architecture, (b) the corresponding RRG.

4.3 RRG generator

To support the GIB architecture, we enhance the RRG generator in VTR which is modelled to describe the FPGA
routing architecture. FPGA routing resources are presented by a directed graph G = (V ,E), where V denotes
routing nodes which can be LB pins or wire segments, and E stands for the programmable connections between
diferent nodes. And the router tries to ind routing paths to implement the connectivity of the circuit while
minimizing the wirelength and the critical path delay. For the CB-SB architecture supported by VTR, one pin
can only connect to the adjacent channel tracks. For the GIB architecture, a pin can connect to diferent channel
tracks from four sides in GIB and there are neighbor interconnects between LB input pins and output pins which
can achieve better lexibility as shown in Fig. 16. In addition, it still supports diferent wire segments including
straight and bent wires. Bent wires are divided into several parts according to the bent points. For example, the
length-2 bent wires are divided into two length-1 parts in Fig. 10 (b). The new RRG generator treats each part of
the bent wire as a routing node. And the adjacent parts are connected by a non-conigurable delayless switch.

4.4 Router lookahead enhancement

The router lookahead algorithm is enhanced to support the bent wire segments. Each bent wire type is also
treated as one wire type which is similar to straight wires. Similar to VPR, the router lookahead run an undirected
Djikastra-based search from each wire type to record the node cost required from the source coordinate to the
sink coordinate. Because the router algorithm in VTR is based on PathFinder which routes signals on a generic
routing resource graph, there is no need to do any algorithm modiication for the GIB architecture.

4.5 Area and delay modeling

VTR measures the whole FPGA area in minimum-width transistor areas [7]. One minimum-width transistor area

is the area of the smallest possible contactable transistor plus the spacing to neighboring transistors for a speciic
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process technology. The drive-strength of a transistor can be increased by either widening its difusion region or
by adding parallel difusion regions. In other words, increasing the drive-strength of a transistor will increase its
area. The delay is estimated with the Elmore delay model in VTR. The GIB architecture enhances the connections
between LB pins and wire segments as well as the connections between LB pins. Hence, the default area and
delay models in VTR are still suitable for GIB architecture.

5 A SEARCHING FRAMEWORK TO EXPLORE MIXED WIRE TYPES

5.1 The architecture searching flow

Since modern FPGAs often contain a variety of wire segments with diferent lengths for a tradeof between
routability and delay [23ś27]. Short wires can achieve better routability while long wires can be used to improve
the delay of the necessary long connections. So, we develop a searching framework based on simulated annealing
algorithm to search for an approximate optimal distribution of wire types which is similar to [28, 45]. The
simulated annealing (SA) algorithm is a stochastic optimizing algorithm which mimics the annealing process
used to gradually cool molten metal to produce high-quality metal structures [17]. Fig. 17 shows the architecture
searching low. It starts with an initial architecture, and then iterates the process of generating new architecture
and evaluating the cost until exiting the outer loop. As the annealing temperature drops, the probability of
changing the architecture and the diference of the architectures decreases. The cost function is deined in (5), k
means the number of the benchmark circuits we use to evaluate the cost, Areai,base and Delayi,base denote the
area and critical path delay of the benchmarks on the baseline architecture respectively, Areai,a and Delayi,a
represent the area and critical path delay of the benchmarks on the new architecture respectively. We useCost(b)
to stand for the cost of the best architecture currently. If ∆c = Cost(a) −Cost(b) < 0, the architecture is accepted,
otherwise, it has some chance of being rejected. The purpose is to prevent the SA algorithm from being trapped
in a local minimum. In the following experiments, k is set to 17 which includes all VTR benchmarks except
LU32PEEng, mcml and stereovision2 to save the run-time since they are exceptionally slow. In addition, we use 17
threads to run VTR simultaneously to further reduce the run-time.

Cost(a) =
1

k

k∑

i=1

Areai,a

Areai,base
×

Delayi,a

Delayi,base
(5)

5.2 The architecture changing strategy

The probability of changing the architecture and the diference of the architectures is decided by the annealing
temperature. As the annealing temperature drops, the probability of changing the architecture and the diference
of the two architectures decreases. There are four parameters can be changed, including the length, rate, bent
pattern of each wire segment and the number of wire types.

• The length of each wire segment: the set of segment lengths to be explored is {1~8}. During the updating,
the change in length is random. Then, it will also generate a bent pattern randomly and keep the rate of
this wire segment unchanged.

• The rate of each wire segment: for each selected wire segment, the number of this wire segment is going
to be added or subtracted by one duplicable group of this kind of wire segment which means the rate of
each wire segment can be added or subtracted by (2L)/W , where L is the wire length and W is the routing
channel width.

• The bent pattern of each wire segment: the change is done by randomly selecting a bent point which is
then set to a random bent type from {ST, CC, CW }.

ACM Trans. Reconig. Technol. Syst.



An Optimized GIB Routing Architecture with Bent Wires for FPGA • 17

Initial architecture 

Generate new architecture 

Update cost and architecture  

Exit inner 

loop ?

Exit outer 

loop ?

Optimal architecture  

Update temperature

T

T

F

F

Accept
T Probabilistic 

accept

FEvaluate cost

 (Δc < 0?)

Fig. 17. The architecture searching flow.

• The number of wire types: an existing segment type can be deleted, or a new segment type can be added
where the length, rate, and the bent pattern of the wire segment are generated randomly.

6 EXPERIMENTAL RESULTS

In this section, we introduce the FPGA baseline architecture, and then compare GIB architecture with CB-
SB architecture based on VTR with provided benchmarks. Finally, we explore mixed wire types to make GIB
architecture perform better.

6.1 Baseline architecture

In this paper, we use an island-based FPGA architecture whose area and delay parameters are extracted from
COFFE 2 [50] at the 22 nm technology node which is the same as in [45]. COFFE 2 is a fully automated transistor
sizing tool for FPGAs which measures delay and area by relying on HSPICE simulation. An LB is composed of
ten 6-input fracturable LUTs and a local routing architecture with 50% connectivity. Memories are conigurable
32K block RAMs that can operate in either single-port mode or dual-port mode. The memory has a conigurable
aspect ratio ranging from 32Kbits × 1 to 1K × 32 in dual-port mode and 32K × 1 to 512 × 64 in single-port mode.
DSP modules are 36 × 36 fracturable multipliers which can operate as two 18 × 18 fracturable multipliers, and
each 18 × 18 multiplier can be conigured as two 9 × 9 multipliers. The IOs of this architecture are all on the
perimeter and each IO contains 8 IO pins which can be conigured to be input or output pins. Segments are
all length-4 wires which can achieve the best area-delay tradeof [40]. The Fc value is set to 0.1 for input pins
and output pins which can achieve good performance [40], and Fs = 3. Experiments with single-driver routing
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architecture [19] have conirmed that Fs = 3 is appropriate for this architecture. The SB pattern is Wilton, and the
routing channel width is set to 300 which is reasonable in prior works [40, 45].

6.2 GIB architecture with symmetry fc values

In this section, we compare GIB architecture with symmetry fc values with CB-SB architecture. At the same
time, other parameters are ixed. We divide Fc value in CB-SB into four equal values for four sides in GIB to
achieve the same number of connections for pins. For example, Fc = 0.1 in CB-SB architecture is equivalent
to fc = (0.025 0.025 0.025 0.025) for input pins and fc = (0.05 0.05 0.05 0.05) for output pins in GIB architecture.
Four groups of diferent fc values are chosen to evaluate GIB architecture respectively as shown in Table 3. The
experimental results show that GIB architecture can achieve about 8.3% improvement in the critical path delay
and 9.9% improvement in area-delay product on average compared with CB-SB architecture as shown in Table
3, where the ratio is obtained by normalizing to CB-SB architecture. Besides, there is a small reduction in area
(1.8%). One of the reasons for area reduction is that the IOs or LB pins in the perimeter of the FPGA device cannot
connect to all four sides of GIBs. As shown in Fig. 18, any IO in the right boundary can only connect to three
sides of the GIB, because there is no channel track on the right side of the GIB which costs less area. Another
reason is that an input pin may connect to a wire segment repeatedly. For example, the value of fc is 0.68 for
input pins in CB-SB architecture and the routing channel width is set to 6. That means an input pin can connect
to 4 adjacent routing channel tracks since 6 × 0.68 = 4. Similarly, the value of fc is set to (0.17 0.17 0.17 0.17) for
input pins in GIB architecture. That means that an input pin can connect to 4 routing channel tracks distributed
in four sides of GIB since 6 × 0.17 + 6 × 0.17 + 6 × 0.17 + 6 × 0.17 = 4. However, the wire segments in opposite
sides may be the same wire segment. As shown in Fig. 19, the input pin connects to one horizontal wire segment
and two vertical wire segments which are shown in red lines. The size of mux decreases because of the reduction
in fan-ins which leads to the area reduction.

Table 3. Results of GIB compared with CB-SB architecture with symmetry fc values

Fc Area Ratio Critical Path Delay Ratio Area-Delay Ratio

0.1 98.20% 90.50% 88.90%
0.12 98.10% 92.70% 91.00%
0.16 98.00% 92.90% 91.00%
0.2 98.40% 90.80% 89.40%

Avg. improvement 1.80% 8.30% 9.90%

6.3 GIB architecture with asymmetry fc distribution

To ind whether diferent fc value distributions afect FPGA performance, we set six groups of diferent fc values
for GIB as shown in Table 4. With the constraints that the four fc values add up to 0.1 for input pins and 0.2 for
output pins, we compare the results with CB-SB architecture. The fc distribution in group 1 is symmetry. As
shown in Fig. 20, the experimental results show that the FPGA architecture with symmetry fc distribution can
achieve the best improvement in the area-delay product.

6.4 GIB architecture with diferent fc values

In this section, we will explore more combinations of fc values to achieve better improvement in area-delay
tradeof. Because too large fc values will bring extra area cost, the upper bound of fc values is (0.05 0.05 0.05 0.05)
for input pins and (0.10 0.10 0.10 0.10) for output pins. The experimental results are compared with the baseline
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Fig. 19. Connections between input pin and wire segments.

Table 4. Groups of GIB architecture with diferent fc distributions

Group fc, in_val fc, out_val

1 (0.025 0.025 0.025 0.025) (0.05 0.05 0.05 0.05)
2 (0.04 0.01 0.04 0.01) (0.05 0.05 0.05 0.05)
3 (0.03 0.02 0.025 0.025) (0.08 0.08 0.02 0.02)
4 (0.025 0.025 0.025 0.025) (0.07 0.07 0.03 0.03)
5 (0.03 0.02 0.025 0.025) (0.05 0.05 0.05 0.05)
6 (0.03 0.02 0.03 0.02) (0.05 0.05 0.05 0.05)

FPGA architecture. As shown in Table 5, when fc values are set to (0.025 0.025 0.025 0.025) for input pins and
(0.05 0.05 0.05 0.05) for output pins, it can achieve the best improvement by 11.1% in area-delay product. The ratio
in Table 5 is obtained by normalized to the CB-SB baseline architecture. The detailed evaluation can be seen in
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Fig. 20. The area-delay product improvement in GIB with diferent fc distributions compared to CB-SB architecture.

Table 6, where "*" means that the circuit can not go through VTR to evaluate power consumption. Results show

that it can also achieve improvement by 9.6% in the power consumption on average. Particularly for those large

benchmark circuits for which critical path delay is more than 20 ns such as arm_core, bgm, LU8PEEng, LU32PEEng,

mcml as shown in Table 6, results show that it can achieve 13% improvement in area-delay product on average.

There are also several small circuits whose performances become worse as shown in Table 6. After analyzing the

critical path of these circuits, we ind that the placements are changed which afects the routing results. During

the placement, the placer [32] in VTR will call for the router [37] to estimate the inter-cluster delay which relies

on the routing architecture. After enhancing the RRG generator in VTR to support GIB architecture, the placer

leads to diferent placements. For these circuits whose performances become worse, there exist some regions

getting congested which leads to longer critical path delay.

Table 5. Comparison of GIB and CB-SB baseline architecture

fc, in_val fc, out_val Area Ratio Delay Ratio Area-Delay Ratio

(0.03 0.03 0.03 0.03) (0.05 0.05 0.05 0.05) 99.30% 92.70% 92.10%

(0.025 0.025 0.025 0.025) (0.04 0.04 0.04 0.04) 97.00% 92.60% 89.80%

(0.025 0.025 0.025 0.025) (0.05 0.05 0.05 0.05) 98.20% 90.50% 88.90%

(0.025 0.025 0.025 0.025) (0.06 0.06 0.06 0.06) 99.40% 91.50% 90.90%

(0.03 0.03 0.03 0.03) (0.06 0.06 0.06 0.06) 100.50% 92.40% 92.80%

(0.04 0.04 0.04 0.04) (0.05 0.05 0.05 0.05) 101.70% 89.80% 91.30%

(0.04 0.04 0.04 0.04) (0.08 0.08 0.08 0.08) 105.30% 91.70% 96.60%

(0.05 0.05 0.05 0.05) (0.10 0.10 0.10 0.10) 110.90% 90.60% 100.50%

6.5 Routability comparision of GIB and CB-SB architecture

In this section, we compare the routability of GIB architecture and CB-SB architecture with Wmin , the minimum

routing channel width of each circuit. We run the VTR router repeatedly to ind the Wmin of each circuit. The fc

values are set to (0.025 0.025 0.025 0.025) for input pins and (0.05 0.05 0.05 0.05) for output pins in GIB architecture
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Table 6. Results of GIB compared with CB-SB architecture

Circuit
Total Area(106) Critical Path Delay(ns ) Area-Delay(106) Power(W )

GIB CB-SB Ratio GIB CB-SB Ratio GIB CB-SB Ratio GIB CB-SB Ratio

arm_core 52.65 53.58 98.3% 18.43 21.22 86.9% 970.3 1136.7 85.4%
bgm 107.15 109.08 98.2% 19.17 21.94 87.4% 2054.3 2392.7 85.9% 0.3180 0.3467 91.7%

blob_merge 24.96 25.41 98.2% 9.86 11.28 87.4% 246.1 286.7 85.8% 0.0723 0.0832 86.9%
boundtop 3.59 3.66 98.1% 2.01 2.30 87.6% 7.2 8.4 86.0% 0.0082 0.0093 88.2%

ch_intrinsics 3.01 3.05 98.6% 2.38 2.57 92.8% 7.2 7.8 91.5% 0.0093 0.0100 92.7%
difeq1 4.51 4.59 98.3% 15.41 16.21 95.0% 69.5 74.4 93.4% 0.0146 0.0160 91.4%
difeq2 7.78 7.93 98.1% 13.09 13.52 96.8% 101.9 107.2 95.0% 0.0123 0.0148 83.0%

LU8PEEng 83.02 84.53 98.2% 77.37 89.26 86.7% 6422.9 7544.8 85.1% 0.3400 0.3647 93.2%
LU32PEEng 278.52 283.79 98.1% 77.02 87.19 88.3% 21451.5 24744.2 86.7% 1.4100 1.5130 93.2%

mcml 239.76 244.16 98.2% 60.57 64.55 93.8% 14522.0 15760.8 92.1% * * *

mkDelayWorker32B 68.89 70.17 98.2% 6.98 8.26 84.5% 480.6 579.6 82.9% 0.1550 0.1696 91.4%

mkPktMerge 20.24 20.58 98.3% 4.29 4.00 107.1% 86.8 82.4 105.3% 0.0703 0.0716 98.2%

mkSMAdapter4B 9.88 10.04 98.4% 5.38 6.47 83.1% 53.1 65.0 81.7% 0.0270 0.0330 81.9%

or1200 18.90 19.25 98.2% 13.94 14.82 94.1% 263.5 285.4 92.3% 0.0523 0.0593 88.1%

raygentop 12.11 12.32 98.3% 4.74 5.31 89.3% 57.4 65.4 87.8% 0.0308 0.0327 94.1%

sha 8.72 8.88 98.1% 13.05 15.10 86.4% 113.8 134.1 84.8% 0.0280 0.0304 92.0%

stereovision0 32.56 33.16 98.2% 4.38 4.73 92.6% 142.5 156.7 90.9% * * *

stereovision1 38.91 39.60 98.2% 4.25 4.33 98.3% 165.4 171.3 96.5% * * *

stereovision2 295.22 300.73 98.2% 16.26 18.05 90.1% 4801.0 5428.5 88.4% * * *

stereovision3 0.75 0.76 98.1% 2.34 2.87 81.7% 1.8 2.2 80.1% * * *

Av. Improvement 1.8% 9.5% 11.1% 9.6%

and the Fc value is set to 0.1 for input pins and output pins in CB-SB architecture. The results are shown in Table

7, where the ratio is obtained by normalized to the CB-SB baseline architecture. The area and delay are reported

with the channel width set to 1.3 timesWmin which is fairly common to create a low-stress routing. The increase

in area is due to the increase in routing channel width which leads to larger mux size. Experimental results show

that GIB architecture increases the minimum routing channel width by 7.5%. It is reasonable as the Wilton SB

pattern is designed for CB-SB architecture which may not achieve the best routability in GIB architecture. So,

design the SB pattern for GIB architecture is the main direction in the future. Besides, the IOs and LBs in the

perimeter of FPGA can connect to less routing wires as shown in Fig. 18 is another reason for the increase in

Wmin . In particular, results shows that the larger circuits whoseWmin are more than 80 (including 14 circuits

except boundtop, ch_intrinsics, difeq2, mkDelayWorker32B, mkPktMerge, stereovision3) have only 2.6% increase in

Wmin in GIB architecture in Table 7.

6.6 The efect of wire length and SB patern

To explore the efect of wire length on GIB architecture, a single type of wire segments with diferent lengths are

used. To obtain accurate and convincing experimental results, the timing and area parameters of wire segments

and muxes are extracted from COFFE 2. Besides, diferent SB patterns are used to explore whether SB patterns

inluence the performance of GIB architecture. We use four kinds of wire segments with length-{2, 3, 4, 6}.

Experimental results show that the longer wire segments can achieve more improvement as shown in Table 8.

The GIB architecture with length-6 wire segments can improve critical path delay by 12.6% and improve the

area-delay product by 13.5% on average compared to CB-SB architecture with length-6 wire segments. Besides,

we run the VTR low with three diferent SB patterns where the value of fs is set to 3. Experimental results show

that Wilton SB pattern can achieve the most improvement on delay and area-delay product in GIB architecture
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Table 7. Wmin of GIB compared with CB-SB architecture

Circuit
Wmin Total Area (106) Critical Path Delay (ns )

GIB CB-SB Ratio GIB CB-SB Ratio GIB CB-SB Ratio

arm_core 180 180 100.0% 47.65 48.14 99.0% 16.93 20.92 80.9%
bgm 144 142 101.4% 89.93 89.71 100.2% 18.26 19.98 91.4%

blob_merge 130 128 101.6% 20.09 20.01 100.4% 9.83 11.37 86.5%
boundtop 60 50 120.0% 2.26 2.15 105.4% 2.30 2.30 100.0%

ch_intrinsics 80 68 117.6% 2.01 1.92 104.4% 2.57 2.66 96.6%
difeq1 94 86 109.3% 3.24 3.17 102.1% 15.63 16.38 95.5%
difeq2 84 72 116.7% 5.49 5.24 104.7% 12.72 13.66 93.1%

LU8PEEng 146 146 100.0% 69.85 70.07 99.7% 74.13 88.60 83.7%
LU32PEEng 188 182 103.3% 257.15 255.86 100.5% 72.78 87.63 83.1%

mcml 144 136 105.9% 201.35 197.79 101.8% 57.18 64.59 88.5%
mkDelayWorker32B 62 50 124.0% 46.53 43.85 106.1% 7.40 7.87 94.1%

mkPktMerge 62 54 114.8% 13.38 12.83 104.3% 4.71 4.34 108.7%
mkSMAdapter4B 110 126 87.3% 7.46 7.85 95.1% 5.53 6.23 88.7%

or1200 140 138 101.4% 15.58 15.60 99.8% 13.37 14.66 91.3%
raygentop 98 94 104.3% 9.02 8.77 102.9% 4.74 5.31 89.3%

sha 114 114 100.0% 6.64 6.67 99.5% 12.82 14.98 85.6%
stereovision0 110 104 105.8% 24.75 24.57 100.8% 3.81 4.73 80.6%
stereovision1 140 130 107.7% 32.16 31.57 101.9% 4.19 4.45 94.2%
stereovision2 126 116 108.6% 235.91 230.66 102.3% 15.27 17.60 86.8%
stereovision3 58 48 120.8% 0.42 0.40 105.6% 2.64 3.26 81.2%

Av. Improvement -7.5% -1.8% 10.0%

as shown in Fig. 21. The results are obtained by normalizing to CB-SB baseline architecture. This conclusion is
consistent with CB-SB architecture[49].

Table 8. Results of GIB compared with CB-SB architecture with wire segments of diferent lengths

Length Area Improvement Critical Path Delay Improvement Area-Delay Improvement

2 0.70% 3.30% 4.00%
3 2.40% 6.60% 8.80%
4 1.80% 9.50% 11.10%
6 1.00% 12.60% 13.50%

6.7 GIB architecture with bent wires

To explore the efect of GIB architecture with bent wires, we design nine GIB architectures with bent wires as
shown in Fig. 22, in which straight means straight wires. The bent wire type and the corresponding bent type
at each switchpoint of this type can be seen on the right of Fig. 22. The routing channel width is set to 300,
and we set fc = (0.025 0.025 0.025 0.025) for input pins and fc = (0.05 0.05 0.05 0.05) for output pins which can
achieve great area-delay product savings as discussed in Section 6.4. Besides, the wire length is restricted to 4
which aims to eliminate performance improvements due to diferent wire lengths. The results are obtained by
normalizing to the baseline CB-SB architecture. Experimental results show that GIB architecture with bent wires
can further improve the performance than GIB architecture with straight wires only. In addition, we use the
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Fig. 21. The normalized area, delay and area-delay in GIB of diferent SB paterns.

searching framework introduced in Section 5 to search for a better GIB architecture with length-4 bent wires.
After exploring the bent wire distributions, it can achieve 13.18% improvement on the critical path delay and 14.6%
improvement on the area-delay product as shown in the last column of Fig. 22 and the wire type distributions can
be seen in Table 9 in which "length" means the wire length, "ratio" means the proportion of the number of such
wires to the total routing channel width and "<bend> list" includes the bent type at each switchpoint of this wire
segment type. In addition, to explore the impact of SB pattern on the performance of GIB architecture with bent
wires, we evaluate the nine GIB architectures in Fig. 22 with diferent SB patterns including Wilton, Subset and
Universal. The average performance improvement can be seen in Fig. 23 by normalizing to the baseline CB-SB
architecture. Experimental results show that Wilton SB pattern can still achieve the best area-delay product
savings in GIB architecture with bent wires.

Fig. 22. The normalized area, delay and area-delay in GIB with bent wires.

Table 9. The SA searching segmentation result for bent wires

Length Ratio <Bend> List

4 52% ST ST ST
4 21% ST CC ST
4 27% ST ST CW
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Fig. 23. The normalized area, delay and area-delay in GIB with bent wires of diferent SB paterns.

6.8 Mixed wire type distribution

To explore routing architecture with mixed wire types, we design four GIB architectures with single wire length
and ive GIB architectures with mixed wire lengths to compare with the baseline CB-SB architecture. The routing
channel width is set to 300. The results are shown in Fig. 24 which are obtained by normalizing to the baseline
CB-SB architecture. Results show that length-4 wiring can still the best area-delay tradeof in the GIB architecture
with single wire length which is consistent of previous work in CB-SB architecture [40]. Besides, the mix of
length-3 and length-6 wiring can achieve better improvement in area-delay product than the single length wiring.
Then, we use the searching framework as mentioned in Section 5 to search for an approximate optimal

distribution of wire types including straight and bent wires. The optional segment lengths contain {1,2,3,4,5,6,7,8}.
The baseline architecture is the CB-SB architecture clariied in Section 6.1. The timing and area parameters of
each wire type and mux are extracted from COFFE 2 at the 22 nm technology node. The routing channel width is
ixed at 300. Fig. 25 shows the searching process where the x-axis is the number of iterations and the y-axis is
the area-delay product improvement compared to the baseline CB-SB architecture. The total number of updated
architecture points is 500 during the SA process. It takes about 5 days with one machine with Intel Xeon CPU
E5-2620 @ 2.10GHz to accomplish the SA process. Experimental results show that the optimized architecture
with mixed wire types can improve critical path delay by 16.4% and achieve 17.1% area-delay product savings on
average compared to the baseline CB-SB architecture. The detailed performance evaluation are shown in Table
10. The ratio is obtained by normalizing to the baseline CB-SB architecture. Table 11 shows the wire distributions
of the near-optimal architecture in area-delay tradeof. "Ratio" means the proportion of the number of such wires
to the total routing channel width and "<bend> list" includes the bent type at each switchpoint of this segment
type. The disappearance of length-1 wire is the existence of neighbor interconnects in GIB architecture. The
wire distributions are similar to some commercial FPGAs [26][47] which also contain length-{3, 4, 6} wires. The
experimental results show that the GIB architecture with mixed wire types can improve the FPGA performance
better.
In addition, we explore the efect of random seeds on the inal optimized architecture as SA is a stochastic

algorithm. We run the SA searching low with three diferent seeds, and the experimental results are shown in
Table 12. Results show that the optimized architecture with diferent seeds only have minor diferences with
similar improvement on the area-delay product. In the future, we will enhance the searching framework to
explore larger searching space such as SB pattern, fc values and optimize the parameters in the SA framework.

7 CONCLUSION

In this paper, we propose a novel unidirectional routing architecture for modern FPGAs. Compared with VTR
CB-SB architecture, GIB architecture with the equivalent fc and fs values achieves 8.3% improvement on the
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Table 10. Results of the optimized GIB compared with CB-SB architecture

Circuit
Total Area(106) Critical Path Delay(ns ) Area-Delay(106)

GIB CB-SB Ratio GIB CB-SB Ratio GIB CB-SB Ratio

arm_core 53.55 53.58 100.0% 16.41 21.22 77.3% 878.62 1136.72 77.3%
bgm 104.52 109.08 95.8% 17.11 21.94 78.0% 1788.24 2392.73 74.7%

blob_merge 25.35 25.41 99.8% 8.88 11.28 78.7% 225.17 286.68 78.5%
boundtop 3.62 3.66 98.9% 1.86 2.30 80.8% 6.71 8.41 79.9%

ch_intrinsics 3.02 3.05 99.0% 2.30 2.57 89.5% 6.94 7.83 88.6%
difeq1 4.54 4.59 99.0% 14.85 16.21 91.6% 67.43 74.36 90.7%
difeq2 7.88 7.93 99.3% 12.26 13.52 90.7% 96.59 107.25 90.1%

LU8PEEng 84.53 84.53 100.0% 70.88 89.26 79.4% 5991.80 7544.76 79.4%
LU32PEEng 282.80 283.79 99.7% 72.81 87.19 83.5% 20589.34 24744.22 83.2%

mcml 242.10 244.16 99.2% 53.51 64.55 82.9% 12955.38 15760.76 82.2%
mkDelayWorker32B 70.13 70.17 99.9% 6.16 8.26 74.6% 431.93 579.56 74.5%

mkPktMerge 20.53 20.58 99.8% 3.97 4.00 99.3% 81.61 82.37 99.1%
mkSMAdapter4B 10.00 10.04 99.5% 5.24 6.47 81.0% 52.37 64.97 80.6%

or1200 19.19 19.25 99.7% 12.83 14.82 86.5% 246.13 285.37 86.2%
raygentop 12.26 12.32 99.5% 4.26 5.31 80.2% 52.22 65.39 79.9%

sha 8.83 8.88 99.4% 12.42 15.10 82.2% 109.61 134.15 81.7%
stereovision0 33.10 33.16 99.8% 3.25 4.73 68.9% 107.71 156.73 68.7%
stereovision1 39.54 39.60 99.9% 4.29 4.33 99.1% 169.54 171.32 99.0%
stereovision2 298.10 300.73 99.1% 15.19 18.05 84.1% 4525.45 5428.54 83.4%
stereovision3 0.74 0.76 96.8% 2.38 2.87 83.0% 1.76 2.19 80.4%

Av. Improvement 0.8% 16.4% 17.1%

Table 11. Segmentation result of the SA searching framework

Length Ratio <Bend> List

3 37% CW CC
4 42% ST ST ST
6 21% ST ST ST ST ST

Table 12. The final optimized architectures with diferent random seeds

Seed Seed = 1 Seed = 2 Seed = 3

Segmentation results

Length Ratio <Bend>
List

Length Ratio <Bend>
List

Length Ratio <Bend>
List

2 3% CW 2 5% CW 3 37% CW CC
3 22% CW ST 3 20% ST ST 4 42% ST ST ST
4 33% ST ST ST 4 40% ST ST ST 6 21% ST ST ST

ST ST
6 42% ST ST ST

ST CW
6 35% ST ST ST

ST CC

Area improvement 0.40% -0.50% 0.80%

Delay improvement 16.80% 17.00% 16.40%

Area-delay improvement 17.10% 16.50% 17.10%

Run-time 5.1 days 5.05 days 5.03 days
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Fig. 24. The normalized area, delay and area-delay in GIB with mixed wire types.

Fig. 25. The SA researching process.

critical path delay and 9.9% improvement on the area-delay product on average compared with CB-SB architecture.
The GIB architecture with fc = (0.025 0.025 0.025 0.025) for input pins and fc = (0.05 0.05 0.05 0.05) for output pins
can improve the critical path delay by approximately 9.5% and the area-delay product by around 11% on average.
After exploring GIB architecture with mixed wire types including straight and bent wires, the optimized GIB
architecture can improve the delay by 16.4% and area-delay product by 17.1% compared to the CB-SB architecture
with length-4 wires. In the future, we will enhance the searching framework to explore larger searching space. In
addition, we will also focus on optimizing GIB architecture for neural network, data communication and other
speciic applications.
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