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Abstract—Field Programmable Gate Arrays (FPGAs) are 
widely used because of the superiority in flexibility and low non-
recurring engineering cost. The routing architecture has a large 
impact on the FPGA area, delay and routability. Hence, it is 
important to optimize the routing architecture. In academia, the 
routing architecture is mainly based on the connection blocks 
(CBs) and switch blocks (SBs), while most researches have 
focused on the SB architectures, such as Wilton, Universal and 
Disjoint SB patterns. In this paper, we propose a novel 
unidirectional routing architecture, general interconnection 
block (GIB) to improve the routability and performance. With 
GIB architecture, logic block (LB) pins can directly connect 
with the adjacent GIBs without programmable switches. Inside 
a GIB, LB pins and wire segments can connect with each other 
flexibly. LB pins can connect to the routing channel tracks on 
the four sides of a GIB. In particular, the logic pins from 
different neighboring LBs that connect to the same GIB can 
connect with each other with only one programmable switch 
which is impossible in the CB-SB architecture. We evaluate the 
GIB architecture on VTR 8 with the provided benchmark 
circuits. The experimental results show that the GIB 
architecture with all length-4 wires, which can offer the best 
area-delay tradeoff among the single wire types, achieves 8.3% 
improvement on the critical path delay and 9.9% improvement 
on the area-delay product on average compared to the VTR CB-
SB architecture with the equivalent CB flexibility (fc) and SB 
flexibility (fs) values. In addition, it can achieve 9.5% 
improvement on the critical path delay and 11.1% improvement 
on the area-delay product after exploring different fc and fs 
values with all length-4 wires. 

I. INTRODUCTION  
FPGAs are widely used due to low non-recurring 

engineering cost, fast time-to-market and their superiority in 
flexibility. However, the flexibility heavily relies on the 
programmable routing architectures, which consist of wire 
segments and programmable switches. The routing 
architecture has a great impact on the area, delay and 
routability [1][2]. In academic researches, the routing 
architecture is mainly based on the CBs and SBs [3][4], where 
CBs are used to connect LB pins with channel tracks while 
SBs are used to connect horizonal and vertical tracks. In the 
early years, most researches focused on the SB design to 
improve the performance and routability, such as Wilton [5], 
Universal [6] and Disjoint which is also known as Subset SB 
pattern [7]. References [8][9] propose CS-Box and GSB 
architectures respectively which rely on bidirectional wires to 
improve the FPGA performance instead of the CB-SB 
architecture. In this paper, we propose a novel unidirectional 

interconnection to explore the routing architecture efficiency. 
Our contributions include:  

 We propose a novel unidirectional interconnection 
architecture, GIB. An LB can connect to four adjacent 
GIBs directly and a GIB has four adjacent LBs. Both 
LB input and output pins can directly connect to the 
adjacent GIB without programmable switches. Inside 
a GIB, LB pins and wire segments can connect with 
each other flexibly. An LB pin can connect to the 
routing channel tracks on the four sides of a GIB, while 
an LB pin can connect to one adjacent channel only in 
the CB-SB architecture. In addition, the pins from 
different neighboring LBs that connect to the same 
GIB can connect with each other with only one 
programmable switch which is impossible in the CB-
SB architecture. 

 In order to evaluate the performance of GIB  
architecture, we enhance the architecture description 
format and the Routing Resource Graph (RRG) 
generator in the latest VTR 8 [10]. We evaluate the 
performance of GIB architecture based on the area and 
delay parameters extracted from COFFE 2 [11] with 
VTR benchmarks [12]. Experimental results show that 
GIB architecture with all length-4 wires can improve 
the critical path delay by 8.3% and the area-delay 
product by 9.9% on average compared to CB-SB 
architecture with equivalent fc and fs values. After 
exploring different fc and fs values, GIB architecture 
can improve the critical path delay by 9.5% and 
achieve area-delay product savings by 11.1% on 
average. In addition, we evaluate GIB and CB-SB 
architectures with more single wire types of length-
{2,3,4,6} respectively, results show that the GIB 
architecture with length-6 wires can achieve the most 
area-delay product improvement by 13.5% than CB-
SB architecture. Besides, Wilton SB pattern can 
improve the critical path delay better than Subset and 
Universal SB patterns.  

The rest of this paper is organized as follows. Section II 
introduces the academic routing architecture and the related 
work. The GIB architecture is proposed in Section III. Section 
IV presents the experimental results compared with the CB-
SB architecture. Section V concludes this paper with the 
future work. 
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Fig. 1. Island-style FPGA architecture 
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Fig. 2. The CB-SB routing architecture  

II. BACKGROUND AND RELATED WORK 

A. FPGA routing architecture 
The modern island-style FPGA is composed of an array of 

tiles which are connected with routing channels through 
programmable switches as show in  Fig. 1. The routing 
channel width is described by W. Each tile consists of an LB 
(or memory, DSP block), two CBs and one SB [4], where CB 
flexibility and SB flexibility are described by fc and fs 
respectively. The value of fc defines the fraction of wires in 
routing channels that an LB pin can connect to, while fs 
defines the number of other wires to which an incoming wire 
can connect inside an SB [4] as shown in Fig. 2. These 
connections are all controlled by programmable switches 
which account for the delay and area. In modern FPGA, the 
programmable switches are isolating and configurable 
multiplexers [13]. Hence, reducing the number of 
programmable switches on the critical path can improve the 
FPGA performance.  

B. VTR platform 
In this paper, the platform to explore the GIB architecture 

is VTR [10], which is an open-source framework to conduct 
FPGA architecture and CAD algorithm research. The VTR 
flow needs two essential input files: a digital circuit described 
by Verilog and an FPGA architecture description file in XML 
format. There are three tools in VTR: Odin II [14], ABC [15] 
and VPR. Odin II is used for Verilog elaboration and the front-
end hard-block synthesis. ABC is for logic optimization and 
technology mapping. VPR contains packing, placement, 
routing and timing analysis. VTR also provides medium-sized 

heterogeneous benchmarks which are suitable for FPGA 
architecture evaluation. 

Currently VTR is based on CB-SB routing architecture as 
shown in Fig. 2. The input pins and output pins are represented 
by black and red circles respectively. The output pins can 
connect to the adjacent routing channel tracks through SB 
multiplexers directly. Horizonal and vertical tracks are 
connected with each other through SB multiplexers as well. 
The input pins can connect to the adjacent routing channel 
tracks through CB multiplexers.  

C.  Related work 
The routing architecture has a great impact on FPGA 

routability and performance. Routing accounts for about 50% 
of the critical path delay [4]. Academic researchers have 
focused on the SB design to improve the routing architecture 
in the past several decades. There are several popular SB 
patterns such as Wilton, Universal and Disjoint. Reference [8] 
proposes Connection-Switch Box (CS-Box) where CB and SB 
are simply combined. In CS-Box, an LB pin can connect to 
the wire segments on the CS-Box sides except the side it 
belongs to. Results show that the number of programmable 
switches decrease by 11.81% at the cost of increasing the 
minimum channel width and the critical path delay. Reference 
[9] proposes a similar architecture, the general switch box 
(GSB), where an LB pin can connect to the wire segments on 
the four sides which can achieve better flexibility than CS-Box. 
The results show better improvement in delay with small 
reduction in routing switches. Both CS-Box and GSB rely on 
bidirectional wires with tristate drivers which are not efficient 
in modern FPGAs. Experimental results show the 
unidirectional wiring can achieve 32% area-delay product 
savings compared to the bidirectional wiring [13]. Reference 
[16] proposes a new switch box pattern for tileable FPGAs 
that achieves 12% improvement in the minimum routable 
channel width. Routing architecture is also well designed in 
commercial FPGAs, such as general routing matrix (GRM) in 
Xilinx Virtex-5 Family which provides an array of routing 
switches between each internal component [17]. Each 
programmable element is tied to one GRM to improve the 
performance. 

There are several papers focusing on the wire segment 
patterns. To explore the routing architecture, references 
[18][19] propose a hard-wired routing pattern to reduce the 
number of programmable switches and achieves good 
improvement in delay. Recently, reference [20] proposes a 
bent routing pattern based on VTR to enhance the routing 
architecture which can achieve 11% area-delay product 
savings. In commercial FPGAs, Xilinx’s Virtex-5 family 
implements a new diagonally-symmetrical architecture 
instead of the traditional wire segments [21]. A highly 
pipelined routing architecture is proposed in Intel’s Agilex 
FPGAs to address the problem that the RC delay per physical 
distance increases as the process geometry shrinks [22].  

This paper is largely inspired by [8][9]. LB pins and wire 
segments can connect with each other flexibly inside a GIB. 
To the best of knowledge, there is no academic paper applying 
similar ideas to the unidirectional routing architecture in 
modern FPGAs.  

III. GIB ROUTING ARCHITECTURE 
 In this section, we propose the GIB architecture as shown 
in Fig. 3, where an LB can connect to four adjacent GIBs 
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without programmable switches and a GIB has four adjacent 
LBs. Inside a GIB, LB pins and wire segments can connect 
with each other with significant flexibility improvement. The 
RRG generator in VTR is enhanced to support the GIB 
architecture.  

A. GIB architecture 
 In GIB architecture, an LB pin can connect to the routing 
channel tracks on the four sides of a GIB while an LB pin can 
only connect to the one adjacent routing channel in CB-SB 
architecture. Besides, output pins and input pins can connect 
with each other inside a GIB with only one programmable 
switch. In CB-SB architecture, there are no such connections: 
output pins must connect to the wire segments through SB 
multiplexers firstly, then connect to input pins through CB 
multiplexers. These connections between output pins and 
input pins are called neighbor interconnects below. 
Comparison of CB-SB and GIB architecture is shown in Fig. 
4. Wire segments are denoted by blue circles while input pins 
and output pins are denoted by black circles and red circles 
respectively. Neighbor interconnects are shown in red lines in 
Fig. 4 (b). It can be seen that GIB architecture can achieve 
much more routing flexibility than the CB-SB architecture. 
The wire segment connections between each other aren’t 
shown because they have the same definitions in CB-SB 
architecture and GIB architecture.  
 The routing path generally starts from an LB output pin, 
and terminates at an LB input pin. In CB-SB architecture, an 
LB output pin passes through programmable switches in SBs, 
which eventually connects to LB input pins or IOs through 
CBs. With GIB architecture, LB pins can connect to the 
routing channel tracks on the four sides of a GIB through 
programmable switches and even connect to other LB pins 
with neighbor interconnects inside a GIB. Hence, GIB 
architecture can possibly reduce the number of programmable 
switches on the critical path. As shown in Fig. 5 (a), an LB 
output pin connects to a target LB input pin through two SB 
multiplexers and one CB multiplexer. With the GIB routing 
architecture as shown in Fig. 5 (b), one buffered multiplexer 
can be saved. Through reducing the number of the 
programmable switches on the critical path, delay can be 
reduced.  

LB LB

LBLB

LB

LB

LB LBLB

GIB

GIB

GIB

GIB

 
Fig. 3. GIB architecture 

 
(a)                                                             (b)  

Fig. 4. Comparison of CB-SB and GIB architecture, (a) CB-SB 
architecture and (b) GIB architecture 

A

CB SB

B

SB

SB

CB

 
(a) 

A

B

GIB
GIB

GIB

 
(b) 

Fig. 5. The routing path compared CB-SB with GIB architecture, (a) CB-
SB architecture and (b) GIB architecture 

B. GIB architecture enhanced in VTR 
 To model GIB architecture in VTR [10], we enhance the 
FPGA architecture description format. The connections in 
GIB can be divided into three types: 

1. The connections between LB pins and wire segments,  

2. The connections between different wire segments,  
3. The connections between LB output pins and LB input 

pins.  
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To describe the above GIB connections, three parameters 
are defined accordingly, fc, fs and fn:  fc defines the fraction 
of wire segments in routing channels that an LB pin can 
connect to; fs defines the number of other wires that a wire can 
connect to; fn defines the number of input pins that an output 
pin can connect to through neighbor interconnects inside a 
GIB. 

As shown in Fig. 6, we enhance the fc XML tag in the 
architecture description format. For every tile, we set four fc 
values for LB input pins and four fc values for LB output pins 
which correspond to four sides in a GIB. For an LB input pin, 
each of four fc values corresponds to the routing channel 
tracks that a pin can connect to one side of the GIB model. It 
can connect to different unidirectional wire pairs modelled by 
VTR as shown in Fig. 7 (a), where each pair corresponds to 
two wire segments with opposite directions. The 1st side is 
defined as the side that the pin belongs to. And the 2nd, 3rd 
and 4th sides correspond to the opposite side, the left side and 
the right side respectively as shown in Fig. 7. For LB output 
pins, they can only connect to those wires that go out of the 
GIB because unidirectional wires can only be driven in the 
start point as shown in Fig. 7 (b). So, the connected routing 
channel tracks are the half of fc values. For symmetry, the first 
and the second fc values have to be the same. So are the third 
and the fourth fc values. Supposing the value of fc is set to 0.1 
for both input pins and output pins in CB-SB architecture, fc 
values from four sides should add up to 0.1 for input pins and 
0.2 for output pins in GIB architecture to achieve the 
equivalent pins flexibility. The fs value defines the number of 
other wires that a wire can connect to inside the GIBs which 
is similar to the fs in CB-SB architecture. Each wire segment 
can connect to three other wire segments when the value of fs 
is set to 3. The value of fn is set to 3 which means an LB output 
pin can connect to three adjacent LB input pins inside a GIB 
through neighbor interconnects. It will be described in detail 
in Section III-C. 

<!-- fc value is divided into four parts,  which correspond to 
four different GIB sides respectively --> 
<fc in_type="frac" in_val="fc_in1 fc_in2 fc_in3 fc_in4" 
out_type="frac" out_val=" fc_out1 fc_out2 fc_out3 fc_out4"/> 

 
<!--fn value defines the connections between output pins and 
input pins through neighbor interconnect --> 
<neighbor_interconnect   fn=3 /> 

Fig. 6. Example of enhanced XML tags for fc and fn values 

1

3

2

4

1

3

2

4  
(a)                                                             (b)      

Fig. 7. An example of LB pins connections in GIB, (a) for input pins and 
(b) for output pins           

 

LB

LBLB

LB

 
Fig. 8. Neighbor connects in GIB architecture                             

TABLE I.  PERCENTAGE OF NET CONNECTIONS WITH RADIUS = 1 

Circuit x=1, 
y=0 

x=0, 
y=1 

x=1, 
y=1 

Sum 

arm_core     2.6% 3.5% 3.5% 9.7% 

bgm             3.6% 5.3% 5.0% 13.9% 

blob_merge       3.7% 5.4% 4.0% 13.2% 

boundtop         19.4% 18.2% 29.8% 67.4% 

ch_intrinsics    15.0% 22.5% 33.6% 71.1% 

diffeq1         5.5% 12.0% 5.7% 23.2% 

diffeq2          6.7% 13.9% 5.0% 25.7% 

LU8PEEng         3.5% 5.1% 4.6% 13.1% 

LU32PEEng       3.4% 4.8% 4.7% 13.0% 

mcml             6.7% 9.7% 7.4% 23.8% 

mkDelayWorker32B 11.1% 0.7% 6.0% 17.8% 

mkPktMerge       5.9% 2.3% 9.8% 18.0% 

mkSMAdapter4B    7.4% 9.0% 8.3% 24.7% 

or1200          3.0% 3.7% 4.2% 10.9% 

raygentop        8.4% 9.2% 6.6% 24.2% 

sha              4.0% 7.1% 5.0% 16.1% 

stereovision0    13.6% 19.6% 8.8% 42.0% 

stereovision1    9.0% 12.8% 6.5% 28.3% 

stereovision2    8.3% 11.0% 8.6% 27.9% 

stereovision3    37.9% 33.7% 17.9% 89.5% 

Average 8.9% 10.5% 9.3% 28.7% 

TABLE II.  PERCENTAGE OF INTER-CLUSTER DELAY WITH RADIUS = 1 

( ) Percentage 

 (1, 0) 2.8% 

 (0, 1) 4.2% 

 (1, 1)   4.4% 

Sum 11.4% 

C. Neighbor interconnect 
To improve GIB architecture, the neighbor interconnects 

[23] are added which can be described by fn. The radius 
parameter [23] is defined to represent the distance of two LBs 
that connect with each other through neighbor interconnects. 
Notice that the radius between two diagonal LBs is also 
defined as 1. For example, the radius between the LB in the 
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upper left corner and the LB in the bottom right corner in Fig. 
8 is 1. To illustrate the advantage of neighbor interconnects, 
we run the VTR flow with the provided Stratix IV- like FPGA 
architecture and benchmarks. Then, the percentage of net 
connections with a radius of 1 is counted as shown in TABLE 
I where x and y stand for the distances between source node 
and sink node in the x and y directions respectively. 
Experimental results show that the net connections with a 
radius of 1 account for 28.7% of the whole net connections on 
average. These nets connections can be connected through 
neighbor interconnects in GIB architecture instead of wire 
segments. Besides, the percentage of the inter-cluster delay 
that the radius is 1 in the total critical path delay is counted as 
shown in TABLE II.  Experimental results show that the inter-
cluster delay that the radius is 1 account for 11.4% of the 
critical path delay on average. With neighbor interconnects, 
the critical path delay can be improved by reducing the 
programmable switch number. 

We specify that an LB output pin can connect to three 
adjacent LB input pins which come from three LBs as shown 
in Fig. 8. These three input pins are located in different sides 
of the GIB and they are from different LBs. These pins are 
connected through buffered multiplexers. With these neighbor 
interconnects, an output pin can connect to three adjacent LB 
input pins with only one multiplexer without passing through 
wire segments. It can save two programmable switches 
compared with the CB-SB architecture. Hence, the critical 
path delay can be well reduced. However, too many neighbor 
interconnects will bring extra area cost and redundancy 
because LB input pins are logically equivalent with crossbar. 
Hence, we only set fn = 3 for an LB output pin. 

D. RRG generator 
 To support the GIB architecture, we enhance the RRG 
generator in VTR which is modelled to describe the FPGA 
routing architecture. FPGA routing resources are presented by 
a directed graph G= (V, E), where V denotes routing nodes 
which can be LB pins or wire segments, and E stands for the 
programmable connections between different nodes. And the 
router tries to find routing paths to implement the connectivity 
of the circuit while minimizing the wirelength and the critical 
path delay. For the CB-SB architecture supported by VTR, 
one pin can only connect to the adjacent channel tracks. For 
the GIB architecture, a pin can connect to different channel 
tracks from four sides in GIB and there are neighbor 
interconnects between LB input pins and output pins which 
can achieve better flexibility as shown in Fig. 9. In addition, it 
still supports different wire segments. 

LB LB
a

b

c

d

e f

h

g

i j

b

a

d e g j
h c

 
(a)                                                                      (b)      

Fig. 9. Routing Resource Graph, (a) GIB architecture, (b) the 
corresponding RRG. 

E. CB-SB modeling in GIB 
GIB architecture can be simplified as CB-SB architecture. 

When the first fc value is set to non-zero and the other three fc 
values are set to zero in the enhanced XML tags as shown in 
Fig. 6, the pin can only connect to one side which it belongs 
to as shown in Fig. 10. Besides, the fn value is set to 0 which 
means there is no neighbor interconnect. Under this parameter 
setting, as far as the routing architecture connections 
concerned, GIB and CB-SB are equivalent.  

 
Fig. 10. CB-SB modelling in GIB 

F. Area and delay modeling 
VTR measures the whole area in minimum-width 

transistor areas [24]. One minimum-width transistor area is 
the area of the smallest possible contactable transistor plus the 
spacing to neighboring transistors for a specific process 
technology. The drive-strength of a transistor can be increased 
by either widening its diffusion region or by adding parallel 
diffusion regions. In other words, increasing the drive-strength 
of a transistor will increase its area. The delay is estimated 
with the Elmore delay model in VTR. The GIB architecture 
enhances the connections between LB pins and wire segments 
as well as the connections between LB pins. Hence, the default 
area and delay model in VTR are still suitable for GIB 
architecture. 

IV. EXPERIMENTAL RESULTS 
In this section, we introduce the FPGA baseline 

architecture, and then compare GIB architecture with CB-SB 
architecture based on VTR with provided benchmarks. 

A. Baseline architecture 
In this paper, we use an island-based FPGA architecture 

whose area and delay parameters are extracted from COFFE 
2 [11] at the 22 nm technology node which is the same as in 
[20]. COFFE 2 is a fully automated transistor sizing tool for 
FPGAs which measures delay and area by relying on HSPICE 
simulation. An LB is composed of ten 6-input fracturable 
LUTs and a local routing architecture with 50% connectivity.  
Memories are configurable 32K block RAMs which can 
operate in either single-port mode or dual-port mode. The 
memory has a configurable aspect ratio ranging from 32Kbits × 1 to 1K × 32 in dual-port mode and 32K × 1 to 512 × 64 
in single-port mode. DSP modules are 36×36 fracturable 
multipliers which can operate as two 18× 18 fracturable 
multipliers, and each 18×18 multiplier can be configured as 
two 9×9 multipliers. The IOs of this architecture are all on the 
perimeter and each IO contains 8 IO pins which can be 
configured to be input or output pins. Segments are all length-
4 wires which can achieve the best area-delay tradeoff [25]. 
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The fc value is set to 0.1 for input pins and output pins which 
can achieve good performance [20], and fs = 3. Experiments 
with single-driver routing architecture [13] have confirmed 
that fs = 3 is appropriate for this architecture. The SB pattern 
is Wilton, and the routing channel width is set to 300 which is 
reasonable in prior works [20][25].  

B. GIB architecture with symmetry fc values 
In this section, we compare GIB architecture with 

symmetry fc values with CB-SB architecture. At the same 
time, other parameters are fixed. We divide fc value in CB-SB 
into four equal values for four sides in GIB to achieve the same 
number of connections for pins. For example,  fc = 0.1 in CB-
SB architecture is equivalent to fc = (0.025 0.025 0.025 0.025) 
for input pins and fc = (0.05 0.05 0.05 0.05) for output pins in 
GIB architecture. Four groups of different fc values are chosen 
to evaluate GIB architecture respectively as shown in TABLE 
III. The experimental results show that GIB architecture can 
achieve about 8.3% improvement in the critical path delay and 
9.9% improvement in area-delay product on average 
compared with CB-SB architecture as shown in TABLE III. 
Besides, there are small reduction  in area (1.8%). One of the 
reasons for area reduction is that the IOs or LB pins in the 
perimeter of FPGA device can’t connect to all four sides of 
GIBs. As shown in Fig. 11, any IO in the right boundary can 
only connect to three sides of the GIB, because there is no 
channel track on the right side of the GIB which costs less area. 
Another reason is that an input pin may connect to a wire 
segment repeatedly. For example, the value of fc is 0.68 for 
input pins in CB-SB architecture and the routing channel 
width is set to 6. That means an input pin can connect to 4 
adjacent  routing channel tracks since 6 0.68 = 4. Similarly, 
the value of fc is set to (0.17 0.17 0.17 0.17) for input pins in 
GIB architecture. That means that an input pin can connect to 
4 routing channel tracks distributed in four sides of GIB since 
6 0.17 + 6 0.17 + 6 0.17 + 6 0.17 = 4. However, the 
wire segments in opposite sides may be the same wire segment. 
As shown in Fig. 12, the input pin connects to one horizonal 
wire segment and two vertical wire segments. The size of 
multiplexer decreases because of the reduction in fan-ins 
which leads to the area reduction.  

C. GIB architecture with asymmetry fc distribution 
To find whether different fc value distributions affect 

FPGA performance, we set six groups of different fc values 
for GIB as shown in TABLE IV. With the constraints that the 
four fc values add up to 0.1 for input pins and 0.2 for output 
pins, we compare the results with CB-SB architecture. The fc 
distribution in group 1 is symmetry. As shown in Fig. 13, the 
experimental results show that the FPGA architecture with 
symmetry fc distribution can achieve the best improvement in 
the area-delay product. 

IO IO

IO LB LB IO

IO LB LB IO

IO IO

GIB

 
Fig. 11. An example of IO connects to GIB 

1

3

2

4

LB

 

Fig. 12. Connections between input pin and wire segments 

TABLE III.  RESULT OF GIB COMPARED WITH CB-SB ARCHITECTURE 
WITH SYMMETRY FC VALUES 

Fc Area Ratio Critical Path 
Delay Ratio 

Area-Delay 
Ratio 

0.1 98.2% 90.5% 88.9% 
0.12 98.1% 92.7% 91.0% 
0.16 98.0% 92.9% 91.0% 
0.2 98.4% 90.8% 89.4% 

Avg. improvement 1.8% 8.3% 9.9% 
a. Ratios are the results that GIB are divided by CB-SB architecture. 

 

TABLE IV.  GROUPS OF GIB ARCHITECTURE WITH DIFFERENT FC 
DISTRIBUTIONS 

Group Fc, in_val Fc, out_val 
1 (0.025 0.025 0.025 0.025) (0.05 0.05 0.05 0.05) 
2 (0.04 0.01 0.04 0.01) (0.05 0.05 0.05 0.05) 
3 (0.03 0.02 0.025 0.025) (0.08 0.08 0.02 0.02) 
4 (0.025 0.025 0.025 0.025) (0.07 0.07 0.03 0.03) 
5 (0.03 0.02 0.025 0.025) (0.05 0.05 0.05 0.05) 
6 (0.03 0.02 0.03 0.02) (0.05 0.05 0.05 0.05) 

 

 
Fig. 13. The area-delay product improvement in GIB with different fc 

distributions compared to CB-SB architecture  

D. GIB architecture with different fc values 
In this section, we will explore more combinations of fc 

values to achieve better improvement in area-delay tradeoff. 
Because too large fc values will bring extra area cost, the upper 
bound of fc values is (0.05 0.05 0.05 0.05) for input pins and 
(0.10 0.10 0.10 0.10) for output pins. The experimental results 
are compared with the baseline FPGA architecture. As shown 
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TABLE V.  COMPARISION OF GIB AND CB-SB BASELINE ARCHITECTURE  

Fc, in_val Fc, out_val Area Ratio Critical Path Delay Ratio Area-Delay Ratio 
(0.03 0.03 0.03 0.03) (0.05 0.05 0.05 0.05) 99.3% 92.7% 92.1% 

(0.025 0.025 0.025 0.025) (0.04 0.04 0.04 0.04) 97.0% 92.6% 89.8% 
(0.025 0.025 0.025 0.025) (0.05 0.05 0.05 0.05) 98.2% 90.5% 88.9% 
(0.025 0.025 0.025 0.025) (0.06 0.06 0.06 0.06) 99.4% 91.5% 90.9% 

(0.03 0.03 0.03 0.03) (0.06 0.06 0.06 0.06) 100.5% 92.4% 92.8% 
(0.04 0.04 0.04 0.04) (0.05 0.05 0.05 0.05) 101.7% 89.8% 91.3% 
(0.04 0.04 0.04 0.04) (0.08 0.08 0.08 0.08) 105.3% 91.7% 96.6% 
(0.05 0.05 0.05 0.05) (0.10 0.10 0.10 0.10) 110.9% 90.6% 100.5% 

TABLE VI.  RESULT OF GIB COMPARED WITH CB-SB BASELINE ARCHITECTURE 

Circuit          Total Area (10 ) Critical Path Delay (ns)  Area-Delay (10 ) 
GIB CB-SB Ratio GIB CB-SB Ratio GIB CB-SB Ratio 

arm_core         52.65  53.58  98.3% 18.43 21.22 86.9% 970.33 1136.72  85.4% 
bgm             107.15  109.08  98.2% 19.17 21.94 87.4% 2054.26 2392.73  85.9% 

blob_merge       24.96  25.41  98.2% 9.86 11.28 87.4% 246.06 286.68  85.8% 
boundtop        3.59  3.66  98.2% 2.01 2.30 87.6% 7.23 8.41  86.0% 

ch_intrinsics    3.01  3.05  98.6% 2.38 2.57 92.8% 7.17 7.83  91.5% 
diffeq1          4.51  4.59  98.3% 15.41 16.21 95.0% 69.478 74.36  93.4% 
diffeq2          7.78  7.93  98.1% 13.09 13.52 96.8% 101.91 107.25  95.0% 

LU8PEEng         83.02  84.53  98.2% 77.37 89.26 86.7% 6422.94 7544.76  85.1% 
LU32PEEng        278.52  283.79  98.1% 77.02 87.19 88.3% 21451.51 24744.22  86.7% 

mcml             239.76  244.16  98.2% 60.57 64.55 93.8% 14522.05 15760.76  92.1% 
mkDelayWorker32B 68.89  70.17  98.2% 6.98 8.26 84.5% 480.58 579.56  82.9% 

mkPktMerge       20.24  20.58  98.3% 4.29 4.00 107.1% 86.77 82.37  105.3% 
mkSMAdapter4B    9.88  10.04  98.4% 5.38 6.47 83.1% 53.11 64.97  81.7% 

or1200           18.90  19.25  98.2% 13.94 14.82 94.1% 263.51 285.37  92.3% 
raygentop        12.11  12.32  98.3% 4.74 5.31 89.3% 57.40 65.39  87.8% 

sha              8.72  8.88  98.1% 13.05 15.10 86.4% 113.78 134.15  84.8% 
stereovision0    32.56  33.16  98.2% 4.38 4.73 92.6% 142.51 156.73  90.9% 
stereovision1    38.91  39.60  98.3% 4.25 4.33 98.3% 165.38 171.32  96.5% 
stereovision2    295.22  300.73  98.2% 16.26 18.05 90.1% 4800.99 5428.54  88.4% 
stereovision3    0.75  0.76  98.1% 2.34 2.87 81.7% 1.75 2.19  80.1% 

Average improvement 1.8% 9.5% 11.1% 

in TABLE V. When fc values are set to (0.025 0.025 0.025 
0.025) for input pins and (0.05 0.05 0.05 0.05) for output pins, 
it can achieve the best improvement by 11.1% in area-delay 
product on average, particularly for those large benchmark 
circuits for which critical path delay is more than 20 ns such 
as arm_core, bgm, LU8PEEng, LU32PEEng, mcml as shown 
in TABLE VI. Results show that it can achieve 13% 
improvement in area-delay product on average. There are also 
several small circuits whose performances become worse as 
shown in TABLE VI. After analyzing the critical path of these 
circuits, we find that the placements are changed which affects 
the routing results. During the placement, the placer [26] in 
VTR will call for the router [27] to estimate the inter-cluster 
delay which relies on the routing architecture. After enhancing 
the RRG generator in VTR to support GIB architecture, the 
placer leads to different placements. To isolate the delay 
improvement without noise from changing placements, we 
evaluate the GIB architecture with locking down the original 
placements. Experimental results show that it can improve the 
critical path delay by approximately 9.5% and the area-delay 
product by 11.1% on average as shown in TABLE VII  which 
is almost the same as the improvement without locking down 
the original placements.  For these circuits whose 
performances become worse, there exist some regions getting 
congested which leads to longer critical path delay. In the 
future, we can explore the placement and routing algorithms 
in VTR to improve the performance of GIB architecture. 

TABLE VII.  RESULT OF GIB COMPARED WITH CB-SB BASELINE 
ARCHITECTURE WITH LOCKING DOWN THE ORIGINAL PLACEMENTS 

 
Area  Critical Path Delay  Area-Delay  

Avg. improvement 1.8% 9.5% 11.1% 

TABLE VIII.  RESULT OF GIB COMPARED WITH CB-SB ARCHITECTURE 
WITH WIRE SEGMENT S OF DIFFERENT LENGTHS 

Length Area 
Improvement 

Critical Path Delay 
Improvement 

Area-Delay 
Improvement 

2 0.7% 3.3% 4.0% 
3 2.4% 6.6% 8.8% 
4 1.8% 9.5% 11.1% 
6 1.0% 12.6% 13.5% 

 

 
Fig. 14. The area-delay product improvement in GIB with different SB 

patterns 
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E. The effect of wire length and SB pattern 
To explore the effect of wire length on GIB architecture, 

the single type of wire segments with different lengths are 
used. To obtain accurate and convincing experimental results, 
the timing and area parameters of wire segments and 
multiplexers are extracted from COFFE 2. Besides, different 
SB patterns are used to explore whether SB patterns influence 
the performance of GIB architecture. We use four kinds of 
wire segments with length- {2, 3, 4, 6}. Experimental results 
show that the longer wire segments can achieve more 
improvement as shown in TABLE VIII. The GIB architecture 
with length-6 wire segments can improve critical path delay 
by 12.6% and improve the area-delay product by 13.5% on 
average compared to CB-SB architecture with length-6 wire 
segments. Besides, we run the VTR flow with three different 
SB patterns where the value of fs is set to 3. Experimental 
results show that Wilton SB pattern can achieve the most 
improvement on critical path delay in GIB architecture as 
shown in Fig. 14. Especially, some circuits are unroutable 
which contain arm_core, LU32PEEng, mcml, mkPktMerge in 
Universal SB pattern which means Universal SB pattern is not 
always suitable for GIB architecture.  

V. CONCLUSION 
In this paper, we propose a novel unidirectional routing 

architecture for modern FPGAs. Compared with VTR CB-SB 
architecture, GIB architecture with the equivalent fc and fs 
values achieves 8.3% improvement on the critical path delay 
and 9.9% improvement on the area-delay product on average 
compared with CB-SB architecture. The optimized GIB 
architecture with fc = (0.025 0.025 0.025 0.025) for input pins 
and fc = (0.05 0.05 0.05 0.05) for output pins can improve the 
critical path delay by approximately 9.5% and the area-delay 
product by around 11% on average. Particularly for large 
circuits with long critical path delay, it can improve by 13% 
on the area-delay product. In future, we can run large circuits 
like Titan benchmarks [28] and explore different wire 
segments and bent wire pattern [20] to improve  the GIB 
architecture further.  
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