

GIB: A Novel Unidirectional Interconnection

Architecture for FPGA
Kaichuang Shi, Hao Zhou, Xuegong Zhou*, Lingli Wang

State Key Laboratory of ASIC and System
Fudan University, Shanghai, China

*zhouxg@fudan.edu.cn

Abstract—Field Programmable Gate Arrays (FPGAs) are
widely used because of the superiority in flexibility and low non-
recurring engineering cost. The routing architecture has a large
impact on the FPGA area, delay and routability. Hence, it is
important to optimize the routing architecture. In academia, the
routing architecture is mainly based on the connection blocks
(CBs) and switch blocks (SBs), while most researches have
focused on the SB architectures, such as Wilton, Universal and
Disjoint SB patterns. In this paper, we propose a novel
unidirectional routing architecture, general interconnection
block (GIB) to improve the routability and performance. With
GIB architecture, logic block (LB) pins can directly connect
with the adjacent GIBs without programmable switches. Inside
a GIB, LB pins and wire segments can connect with each other
flexibly. LB pins can connect to the routing channel tracks on
the four sides of a GIB. In particular, the logic pins from
different neighboring LBs that connect to the same GIB can
connect with each other with only one programmable switch
which is impossible in the CB-SB architecture. We evaluate the
GIB architecture on VTR 8 with the provided benchmark
circuits. The experimental results show that the GIB
architecture with all length-4 wires, which can offer the best
area-delay tradeoff among the single wire types, achieves 8.3%
improvement on the critical path delay and 9.9% improvement
on the area-delay product on average compared to the VTR CB-
SB architecture with the equivalent CB flexibility (fc) and SB
flexibility (fs) values. In addition, it can achieve 9.5%
improvement on the critical path delay and 11.1% improvement
on the area-delay product after exploring different fc and fs
values with all length-4 wires.

I. INTRODUCTION
FPGAs are widely used due to low non-recurring

engineering cost, fast time-to-market and their superiority in
flexibility. However, the flexibility heavily relies on the
programmable routing architectures, which consist of wire
segments and programmable switches. The routing
architecture has a great impact on the area, delay and
routability [1][2]. In academic researches, the routing
architecture is mainly based on the CBs and SBs [3][4], where
CBs are used to connect LB pins with channel tracks while
SBs are used to connect horizonal and vertical tracks. In the
early years, most researches focused on the SB design to
improve the performance and routability, such as Wilton [5],
Universal [6] and Disjoint which is also known as Subset SB
pattern [7]. References [8][9] propose CS-Box and GSB
architectures respectively which rely on bidirectional wires to
improve the FPGA performance instead of the CB-SB
architecture. In this paper, we propose a novel unidirectional

interconnection to explore the routing architecture efficiency.
Our contributions include:

 We propose a novel unidirectional interconnection
architecture, GIB. An LB can connect to four adjacent
GIBs directly and a GIB has four adjacent LBs. Both
LB input and output pins can directly connect to the
adjacent GIB without programmable switches. Inside
a GIB, LB pins and wire segments can connect with
each other flexibly. An LB pin can connect to the
routing channel tracks on the four sides of a GIB, while
an LB pin can connect to one adjacent channel only in
the CB-SB architecture. In addition, the pins from
different neighboring LBs that connect to the same
GIB can connect with each other with only one
programmable switch which is impossible in the CB-
SB architecture.

 In order to evaluate the performance of GIB
architecture, we enhance the architecture description
format and the Routing Resource Graph (RRG)
generator in the latest VTR 8 [10]. We evaluate the
performance of GIB architecture based on the area and
delay parameters extracted from COFFE 2 [11] with
VTR benchmarks [12]. Experimental results show that
GIB architecture with all length-4 wires can improve
the critical path delay by 8.3% and the area-delay
product by 9.9% on average compared to CB-SB
architecture with equivalent fc and fs values. After
exploring different fc and fs values, GIB architecture
can improve the critical path delay by 9.5% and
achieve area-delay product savings by 11.1% on
average. In addition, we evaluate GIB and CB-SB
architectures with more single wire types of length-
{2,3,4,6} respectively, results show that the GIB
architecture with length-6 wires can achieve the most
area-delay product improvement by 13.5% than CB-
SB architecture. Besides, Wilton SB pattern can
improve the critical path delay better than Subset and
Universal SB patterns.

The rest of this paper is organized as follows. Section II
introduces the academic routing architecture and the related
work. The GIB architecture is proposed in Section III. Section
IV presents the experimental results compared with the CB-
SB architecture. Section V concludes this paper with the
future work.

174

2020 International Conference on Field-Programmable Technology (ICFPT)

978-1-6654-2302-1/20/$31.00 ©2020 IEEE
DOI 10.1109/ICFPT51103.2020.00032

20
20

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 T

ec
hn

ol
og

y
(IC

FP
T)

 |
 9

78
-1

-6
65

4-
23

02
-1

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
FP

T5
11

03
.2

02
0.

00
03

2

SB

LB

CB

CBTile Tile

Tile Tile

Fig. 1. Island-style FPGA architecture

LB LB

LB LB

CB SB

CB

fs=3

W=4, fc,in=0.5, fc,out=0.25

Fig. 2. The CB-SB routing architecture

II. BACKGROUND AND RELATED WORK

A. FPGA routing architecture
The modern island-style FPGA is composed of an array of

tiles which are connected with routing channels through
programmable switches as show in Fig. 1. The routing
channel width is described by W. Each tile consists of an LB
(or memory, DSP block), two CBs and one SB [4], where CB
flexibility and SB flexibility are described by fc and fs
respectively. The value of fc defines the fraction of wires in
routing channels that an LB pin can connect to, while fs
defines the number of other wires to which an incoming wire
can connect inside an SB [4] as shown in Fig. 2. These
connections are all controlled by programmable switches
which account for the delay and area. In modern FPGA, the
programmable switches are isolating and configurable
multiplexers [13]. Hence, reducing the number of
programmable switches on the critical path can improve the
FPGA performance.

B. VTR platform
In this paper, the platform to explore the GIB architecture

is VTR [10], which is an open-source framework to conduct
FPGA architecture and CAD algorithm research. The VTR
flow needs two essential input files: a digital circuit described
by Verilog and an FPGA architecture description file in XML
format. There are three tools in VTR: Odin II [14], ABC [15]
and VPR. Odin II is used for Verilog elaboration and the front-
end hard-block synthesis. ABC is for logic optimization and
technology mapping. VPR contains packing, placement,
routing and timing analysis. VTR also provides medium-sized

heterogeneous benchmarks which are suitable for FPGA
architecture evaluation.

Currently VTR is based on CB-SB routing architecture as
shown in Fig. 2. The input pins and output pins are represented
by black and red circles respectively. The output pins can
connect to the adjacent routing channel tracks through SB
multiplexers directly. Horizonal and vertical tracks are
connected with each other through SB multiplexers as well.
The input pins can connect to the adjacent routing channel
tracks through CB multiplexers.

C. Related work
The routing architecture has a great impact on FPGA

routability and performance. Routing accounts for about 50%
of the critical path delay [4]. Academic researchers have
focused on the SB design to improve the routing architecture
in the past several decades. There are several popular SB
patterns such as Wilton, Universal and Disjoint. Reference [8]
proposes Connection-Switch Box (CS-Box) where CB and SB
are simply combined. In CS-Box, an LB pin can connect to
the wire segments on the CS-Box sides except the side it
belongs to. Results show that the number of programmable
switches decrease by 11.81% at the cost of increasing the
minimum channel width and the critical path delay. Reference
[9] proposes a similar architecture, the general switch box
(GSB), where an LB pin can connect to the wire segments on
the four sides which can achieve better flexibility than CS-Box.
The results show better improvement in delay with small
reduction in routing switches. Both CS-Box and GSB rely on
bidirectional wires with tristate drivers which are not efficient
in modern FPGAs. Experimental results show the
unidirectional wiring can achieve 32% area-delay product
savings compared to the bidirectional wiring [13]. Reference
[16] proposes a new switch box pattern for tileable FPGAs
that achieves 12% improvement in the minimum routable
channel width. Routing architecture is also well designed in
commercial FPGAs, such as general routing matrix (GRM) in
Xilinx Virtex-5 Family which provides an array of routing
switches between each internal component [17]. Each
programmable element is tied to one GRM to improve the
performance.

There are several papers focusing on the wire segment
patterns. To explore the routing architecture, references
[18][19] propose a hard-wired routing pattern to reduce the
number of programmable switches and achieves good
improvement in delay. Recently, reference [20] proposes a
bent routing pattern based on VTR to enhance the routing
architecture which can achieve 11% area-delay product
savings. In commercial FPGAs, Xilinx’s Virtex-5 family
implements a new diagonally-symmetrical architecture
instead of the traditional wire segments [21]. A highly
pipelined routing architecture is proposed in Intel’s Agilex
FPGAs to address the problem that the RC delay per physical
distance increases as the process geometry shrinks [22].

This paper is largely inspired by [8][9]. LB pins and wire
segments can connect with each other flexibly inside a GIB.
To the best of knowledge, there is no academic paper applying
similar ideas to the unidirectional routing architecture in
modern FPGAs.

III. GIB ROUTING ARCHITECTURE
 In this section, we propose the GIB architecture as shown
in Fig. 3, where an LB can connect to four adjacent GIBs

175

without programmable switches and a GIB has four adjacent
LBs. Inside a GIB, LB pins and wire segments can connect
with each other with significant flexibility improvement. The
RRG generator in VTR is enhanced to support the GIB
architecture.

A. GIB architecture
 In GIB architecture, an LB pin can connect to the routing
channel tracks on the four sides of a GIB while an LB pin can
only connect to the one adjacent routing channel in CB-SB
architecture. Besides, output pins and input pins can connect
with each other inside a GIB with only one programmable
switch. In CB-SB architecture, there are no such connections:
output pins must connect to the wire segments through SB
multiplexers firstly, then connect to input pins through CB
multiplexers. These connections between output pins and
input pins are called neighbor interconnects below.
Comparison of CB-SB and GIB architecture is shown in Fig.
4. Wire segments are denoted by blue circles while input pins
and output pins are denoted by black circles and red circles
respectively. Neighbor interconnects are shown in red lines in
Fig. 4 (b). It can be seen that GIB architecture can achieve
much more routing flexibility than the CB-SB architecture.
The wire segment connections between each other aren’t
shown because they have the same definitions in CB-SB
architecture and GIB architecture.
 The routing path generally starts from an LB output pin,
and terminates at an LB input pin. In CB-SB architecture, an
LB output pin passes through programmable switches in SBs,
which eventually connects to LB input pins or IOs through
CBs. With GIB architecture, LB pins can connect to the
routing channel tracks on the four sides of a GIB through
programmable switches and even connect to other LB pins
with neighbor interconnects inside a GIB. Hence, GIB
architecture can possibly reduce the number of programmable
switches on the critical path. As shown in Fig. 5 (a), an LB
output pin connects to a target LB input pin through two SB
multiplexers and one CB multiplexer. With the GIB routing
architecture as shown in Fig. 5 (b), one buffered multiplexer
can be saved. Through reducing the number of the
programmable switches on the critical path, delay can be
reduced.

LB LB

LBLB

LB

LB

LB LBLB

GIB

GIB

GIB

GIB

Fig. 3. GIB architecture

(a) (b)

Fig. 4. Comparison of CB-SB and GIB architecture, (a) CB-SB
architecture and (b) GIB architecture

A

CB SB

B

SB

SB

CB

(a)

A

B

GIB
GIB

GIB

(b)

Fig. 5. The routing path compared CB-SB with GIB architecture, (a) CB-
SB architecture and (b) GIB architecture

B. GIB architecture enhanced in VTR
 To model GIB architecture in VTR [10], we enhance the
FPGA architecture description format. The connections in
GIB can be divided into three types:

1. The connections between LB pins and wire segments,

2. The connections between different wire segments,
3. The connections between LB output pins and LB input

pins.

176

To describe the above GIB connections, three parameters
are defined accordingly, fc, fs and fn: fc defines the fraction
of wire segments in routing channels that an LB pin can
connect to; fs defines the number of other wires that a wire can
connect to; fn defines the number of input pins that an output
pin can connect to through neighbor interconnects inside a
GIB.

As shown in Fig. 6, we enhance the fc XML tag in the
architecture description format. For every tile, we set four fc
values for LB input pins and four fc values for LB output pins
which correspond to four sides in a GIB. For an LB input pin,
each of four fc values corresponds to the routing channel
tracks that a pin can connect to one side of the GIB model. It
can connect to different unidirectional wire pairs modelled by
VTR as shown in Fig. 7 (a), where each pair corresponds to
two wire segments with opposite directions. The 1st side is
defined as the side that the pin belongs to. And the 2nd, 3rd
and 4th sides correspond to the opposite side, the left side and
the right side respectively as shown in Fig. 7. For LB output
pins, they can only connect to those wires that go out of the
GIB because unidirectional wires can only be driven in the
start point as shown in Fig. 7 (b). So, the connected routing
channel tracks are the half of fc values. For symmetry, the first
and the second fc values have to be the same. So are the third
and the fourth fc values. Supposing the value of fc is set to 0.1
for both input pins and output pins in CB-SB architecture, fc
values from four sides should add up to 0.1 for input pins and
0.2 for output pins in GIB architecture to achieve the
equivalent pins flexibility. The fs value defines the number of
other wires that a wire can connect to inside the GIBs which
is similar to the fs in CB-SB architecture. Each wire segment
can connect to three other wire segments when the value of fs
is set to 3. The value of fn is set to 3 which means an LB output
pin can connect to three adjacent LB input pins inside a GIB
through neighbor interconnects. It will be described in detail
in Section III-C.

<!-- fc value is divided into four parts, which correspond to
four different GIB sides respectively -->
<fc in_type="frac" in_val="fc_in1 fc_in2 fc_in3 fc_in4"
out_type="frac" out_val=" fc_out1 fc_out2 fc_out3 fc_out4"/>

<!--fn value defines the connections between output pins and
input pins through neighbor interconnect -->
<neighbor_interconnect fn=3 />

Fig. 6. Example of enhanced XML tags for fc and fn values

1

3

2

4

1

3

2

4
(a) (b)

Fig. 7. An example of LB pins connections in GIB, (a) for input pins and
(b) for output pins

LB

LBLB

LB

Fig. 8. Neighbor connects in GIB architecture

TABLE I. PERCENTAGE OF NET CONNECTIONS WITH RADIUS = 1

Circuit x=1,
y=0

x=0,
y=1

x=1,
y=1

Sum

arm_core 2.6% 3.5% 3.5% 9.7%

bgm 3.6% 5.3% 5.0% 13.9%

blob_merge 3.7% 5.4% 4.0% 13.2%

boundtop 19.4% 18.2% 29.8% 67.4%

ch_intrinsics 15.0% 22.5% 33.6% 71.1%

diffeq1 5.5% 12.0% 5.7% 23.2%

diffeq2 6.7% 13.9% 5.0% 25.7%

LU8PEEng 3.5% 5.1% 4.6% 13.1%

LU32PEEng 3.4% 4.8% 4.7% 13.0%

mcml 6.7% 9.7% 7.4% 23.8%

mkDelayWorker32B 11.1% 0.7% 6.0% 17.8%

mkPktMerge 5.9% 2.3% 9.8% 18.0%

mkSMAdapter4B 7.4% 9.0% 8.3% 24.7%

or1200 3.0% 3.7% 4.2% 10.9%

raygentop 8.4% 9.2% 6.6% 24.2%

sha 4.0% 7.1% 5.0% 16.1%

stereovision0 13.6% 19.6% 8.8% 42.0%

stereovision1 9.0% 12.8% 6.5% 28.3%

stereovision2 8.3% 11.0% 8.6% 27.9%

stereovision3 37.9% 33.7% 17.9% 89.5%

Average 8.9% 10.5% 9.3% 28.7%

TABLE II. PERCENTAGE OF INTER-CLUSTER DELAY WITH RADIUS = 1

() Percentage

 (1, 0) 2.8%

 (0, 1) 4.2%

 (1, 1) 4.4%

Sum 11.4%

C. Neighbor interconnect
To improve GIB architecture, the neighbor interconnects

[23] are added which can be described by fn. The radius
parameter [23] is defined to represent the distance of two LBs
that connect with each other through neighbor interconnects.
Notice that the radius between two diagonal LBs is also
defined as 1. For example, the radius between the LB in the

177

upper left corner and the LB in the bottom right corner in Fig.
8 is 1. To illustrate the advantage of neighbor interconnects,
we run the VTR flow with the provided Stratix IV- like FPGA
architecture and benchmarks. Then, the percentage of net
connections with a radius of 1 is counted as shown in TABLE
I where x and y stand for the distances between source node
and sink node in the x and y directions respectively.
Experimental results show that the net connections with a
radius of 1 account for 28.7% of the whole net connections on
average. These nets connections can be connected through
neighbor interconnects in GIB architecture instead of wire
segments. Besides, the percentage of the inter-cluster delay
that the radius is 1 in the total critical path delay is counted as
shown in TABLE II. Experimental results show that the inter-
cluster delay that the radius is 1 account for 11.4% of the
critical path delay on average. With neighbor interconnects,
the critical path delay can be improved by reducing the
programmable switch number.

We specify that an LB output pin can connect to three
adjacent LB input pins which come from three LBs as shown
in Fig. 8. These three input pins are located in different sides
of the GIB and they are from different LBs. These pins are
connected through buffered multiplexers. With these neighbor
interconnects, an output pin can connect to three adjacent LB
input pins with only one multiplexer without passing through
wire segments. It can save two programmable switches
compared with the CB-SB architecture. Hence, the critical
path delay can be well reduced. However, too many neighbor
interconnects will bring extra area cost and redundancy
because LB input pins are logically equivalent with crossbar.
Hence, we only set fn = 3 for an LB output pin.

D. RRG generator
 To support the GIB architecture, we enhance the RRG
generator in VTR which is modelled to describe the FPGA
routing architecture. FPGA routing resources are presented by
a directed graph G= (V, E), where V denotes routing nodes
which can be LB pins or wire segments, and E stands for the
programmable connections between different nodes. And the
router tries to find routing paths to implement the connectivity
of the circuit while minimizing the wirelength and the critical
path delay. For the CB-SB architecture supported by VTR,
one pin can only connect to the adjacent channel tracks. For
the GIB architecture, a pin can connect to different channel
tracks from four sides in GIB and there are neighbor
interconnects between LB input pins and output pins which
can achieve better flexibility as shown in Fig. 9. In addition, it
still supports different wire segments.

LB LB
a

b

c

d

e f

h

g

i j

b

a

d e g j
h c

(a) (b)

Fig. 9. Routing Resource Graph, (a) GIB architecture, (b) the
corresponding RRG.

E. CB-SB modeling in GIB
GIB architecture can be simplified as CB-SB architecture.

When the first fc value is set to non-zero and the other three fc
values are set to zero in the enhanced XML tags as shown in
Fig. 6, the pin can only connect to one side which it belongs
to as shown in Fig. 10. Besides, the fn value is set to 0 which
means there is no neighbor interconnect. Under this parameter
setting, as far as the routing architecture connections
concerned, GIB and CB-SB are equivalent.

Fig. 10. CB-SB modelling in GIB

F. Area and delay modeling
VTR measures the whole area in minimum-width

transistor areas [24]. One minimum-width transistor area is
the area of the smallest possible contactable transistor plus the
spacing to neighboring transistors for a specific process
technology. The drive-strength of a transistor can be increased
by either widening its diffusion region or by adding parallel
diffusion regions. In other words, increasing the drive-strength
of a transistor will increase its area. The delay is estimated
with the Elmore delay model in VTR. The GIB architecture
enhances the connections between LB pins and wire segments
as well as the connections between LB pins. Hence, the default
area and delay model in VTR are still suitable for GIB
architecture.

IV. EXPERIMENTAL RESULTS
In this section, we introduce the FPGA baseline

architecture, and then compare GIB architecture with CB-SB
architecture based on VTR with provided benchmarks.

A. Baseline architecture
In this paper, we use an island-based FPGA architecture

whose area and delay parameters are extracted from COFFE
2 [11] at the 22 nm technology node which is the same as in
[20]. COFFE 2 is a fully automated transistor sizing tool for
FPGAs which measures delay and area by relying on HSPICE
simulation. An LB is composed of ten 6-input fracturable
LUTs and a local routing architecture with 50% connectivity.
Memories are configurable 32K block RAMs which can
operate in either single-port mode or dual-port mode. The
memory has a configurable aspect ratio ranging from 32Kbits × 1 to 1K × 32 in dual-port mode and 32K × 1 to 512 × 64
in single-port mode. DSP modules are 36×36 fracturable
multipliers which can operate as two 18× 18 fracturable
multipliers, and each 18×18 multiplier can be configured as
two 9×9 multipliers. The IOs of this architecture are all on the
perimeter and each IO contains 8 IO pins which can be
configured to be input or output pins. Segments are all length-
4 wires which can achieve the best area-delay tradeoff [25].

178

The fc value is set to 0.1 for input pins and output pins which
can achieve good performance [20], and fs = 3. Experiments
with single-driver routing architecture [13] have confirmed
that fs = 3 is appropriate for this architecture. The SB pattern
is Wilton, and the routing channel width is set to 300 which is
reasonable in prior works [20][25].

B. GIB architecture with symmetry fc values
In this section, we compare GIB architecture with

symmetry fc values with CB-SB architecture. At the same
time, other parameters are fixed. We divide fc value in CB-SB
into four equal values for four sides in GIB to achieve the same
number of connections for pins. For example, fc = 0.1 in CB-
SB architecture is equivalent to fc = (0.025 0.025 0.025 0.025)
for input pins and fc = (0.05 0.05 0.05 0.05) for output pins in
GIB architecture. Four groups of different fc values are chosen
to evaluate GIB architecture respectively as shown in TABLE
III. The experimental results show that GIB architecture can
achieve about 8.3% improvement in the critical path delay and
9.9% improvement in area-delay product on average
compared with CB-SB architecture as shown in TABLE III.
Besides, there are small reduction in area (1.8%). One of the
reasons for area reduction is that the IOs or LB pins in the
perimeter of FPGA device can’t connect to all four sides of
GIBs. As shown in Fig. 11, any IO in the right boundary can
only connect to three sides of the GIB, because there is no
channel track on the right side of the GIB which costs less area.
Another reason is that an input pin may connect to a wire
segment repeatedly. For example, the value of fc is 0.68 for
input pins in CB-SB architecture and the routing channel
width is set to 6. That means an input pin can connect to 4
adjacent routing channel tracks since 6 0.68 = 4. Similarly,
the value of fc is set to (0.17 0.17 0.17 0.17) for input pins in
GIB architecture. That means that an input pin can connect to
4 routing channel tracks distributed in four sides of GIB since
6 0.17 + 6 0.17 + 6 0.17 + 6 0.17 = 4. However, the
wire segments in opposite sides may be the same wire segment.
As shown in Fig. 12, the input pin connects to one horizonal
wire segment and two vertical wire segments. The size of
multiplexer decreases because of the reduction in fan-ins
which leads to the area reduction.

C. GIB architecture with asymmetry fc distribution
To find whether different fc value distributions affect

FPGA performance, we set six groups of different fc values
for GIB as shown in TABLE IV. With the constraints that the
four fc values add up to 0.1 for input pins and 0.2 for output
pins, we compare the results with CB-SB architecture. The fc
distribution in group 1 is symmetry. As shown in Fig. 13, the
experimental results show that the FPGA architecture with
symmetry fc distribution can achieve the best improvement in
the area-delay product.

IO IO

IO LB LB IO

IO LB LB IO

IO IO

GIB

Fig. 11. An example of IO connects to GIB

1

3

2

4

LB

Fig. 12. Connections between input pin and wire segments

TABLE III. RESULT OF GIB COMPARED WITH CB-SB ARCHITECTURE
WITH SYMMETRY FC VALUES

Fc Area Ratio Critical Path
Delay Ratio

Area-Delay
Ratio

0.1 98.2% 90.5% 88.9%
0.12 98.1% 92.7% 91.0%
0.16 98.0% 92.9% 91.0%
0.2 98.4% 90.8% 89.4%

Avg. improvement 1.8% 8.3% 9.9%
a. Ratios are the results that GIB are divided by CB-SB architecture.

TABLE IV. GROUPS OF GIB ARCHITECTURE WITH DIFFERENT FC
DISTRIBUTIONS

Group Fc, in_val Fc, out_val
1 (0.025 0.025 0.025 0.025) (0.05 0.05 0.05 0.05)
2 (0.04 0.01 0.04 0.01) (0.05 0.05 0.05 0.05)
3 (0.03 0.02 0.025 0.025) (0.08 0.08 0.02 0.02)
4 (0.025 0.025 0.025 0.025) (0.07 0.07 0.03 0.03)
5 (0.03 0.02 0.025 0.025) (0.05 0.05 0.05 0.05)
6 (0.03 0.02 0.03 0.02) (0.05 0.05 0.05 0.05)

Fig. 13. The area-delay product improvement in GIB with different fc

distributions compared to CB-SB architecture

D. GIB architecture with different fc values
In this section, we will explore more combinations of fc

values to achieve better improvement in area-delay tradeoff.
Because too large fc values will bring extra area cost, the upper
bound of fc values is (0.05 0.05 0.05 0.05) for input pins and
(0.10 0.10 0.10 0.10) for output pins. The experimental results
are compared with the baseline FPGA architecture. As shown

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 3 4 5 6

ar
ea

-d
el

ay
 p

ro
du

ct

im
pr

ov
em

en
t

179

TABLE V. COMPARISION OF GIB AND CB-SB BASELINE ARCHITECTURE

Fc, in_val Fc, out_val Area Ratio Critical Path Delay Ratio Area-Delay Ratio
(0.03 0.03 0.03 0.03) (0.05 0.05 0.05 0.05) 99.3% 92.7% 92.1%

(0.025 0.025 0.025 0.025) (0.04 0.04 0.04 0.04) 97.0% 92.6% 89.8%
(0.025 0.025 0.025 0.025) (0.05 0.05 0.05 0.05) 98.2% 90.5% 88.9%
(0.025 0.025 0.025 0.025) (0.06 0.06 0.06 0.06) 99.4% 91.5% 90.9%

(0.03 0.03 0.03 0.03) (0.06 0.06 0.06 0.06) 100.5% 92.4% 92.8%
(0.04 0.04 0.04 0.04) (0.05 0.05 0.05 0.05) 101.7% 89.8% 91.3%
(0.04 0.04 0.04 0.04) (0.08 0.08 0.08 0.08) 105.3% 91.7% 96.6%
(0.05 0.05 0.05 0.05) (0.10 0.10 0.10 0.10) 110.9% 90.6% 100.5%

TABLE VI. RESULT OF GIB COMPARED WITH CB-SB BASELINE ARCHITECTURE

Circuit Total Area (10) Critical Path Delay (ns) Area-Delay (10)
GIB CB-SB Ratio GIB CB-SB Ratio GIB CB-SB Ratio

arm_core 52.65 53.58 98.3% 18.43 21.22 86.9% 970.33 1136.72 85.4%
bgm 107.15 109.08 98.2% 19.17 21.94 87.4% 2054.26 2392.73 85.9%

blob_merge 24.96 25.41 98.2% 9.86 11.28 87.4% 246.06 286.68 85.8%
boundtop 3.59 3.66 98.2% 2.01 2.30 87.6% 7.23 8.41 86.0%

ch_intrinsics 3.01 3.05 98.6% 2.38 2.57 92.8% 7.17 7.83 91.5%
diffeq1 4.51 4.59 98.3% 15.41 16.21 95.0% 69.478 74.36 93.4%
diffeq2 7.78 7.93 98.1% 13.09 13.52 96.8% 101.91 107.25 95.0%

LU8PEEng 83.02 84.53 98.2% 77.37 89.26 86.7% 6422.94 7544.76 85.1%
LU32PEEng 278.52 283.79 98.1% 77.02 87.19 88.3% 21451.51 24744.22 86.7%

mcml 239.76 244.16 98.2% 60.57 64.55 93.8% 14522.05 15760.76 92.1%
mkDelayWorker32B 68.89 70.17 98.2% 6.98 8.26 84.5% 480.58 579.56 82.9%

mkPktMerge 20.24 20.58 98.3% 4.29 4.00 107.1% 86.77 82.37 105.3%
mkSMAdapter4B 9.88 10.04 98.4% 5.38 6.47 83.1% 53.11 64.97 81.7%

or1200 18.90 19.25 98.2% 13.94 14.82 94.1% 263.51 285.37 92.3%
raygentop 12.11 12.32 98.3% 4.74 5.31 89.3% 57.40 65.39 87.8%

sha 8.72 8.88 98.1% 13.05 15.10 86.4% 113.78 134.15 84.8%
stereovision0 32.56 33.16 98.2% 4.38 4.73 92.6% 142.51 156.73 90.9%
stereovision1 38.91 39.60 98.3% 4.25 4.33 98.3% 165.38 171.32 96.5%
stereovision2 295.22 300.73 98.2% 16.26 18.05 90.1% 4800.99 5428.54 88.4%
stereovision3 0.75 0.76 98.1% 2.34 2.87 81.7% 1.75 2.19 80.1%

Average improvement 1.8% 9.5% 11.1%

in TABLE V. When fc values are set to (0.025 0.025 0.025
0.025) for input pins and (0.05 0.05 0.05 0.05) for output pins,
it can achieve the best improvement by 11.1% in area-delay
product on average, particularly for those large benchmark
circuits for which critical path delay is more than 20 ns such
as arm_core, bgm, LU8PEEng, LU32PEEng, mcml as shown
in TABLE VI. Results show that it can achieve 13%
improvement in area-delay product on average. There are also
several small circuits whose performances become worse as
shown in TABLE VI. After analyzing the critical path of these
circuits, we find that the placements are changed which affects
the routing results. During the placement, the placer [26] in
VTR will call for the router [27] to estimate the inter-cluster
delay which relies on the routing architecture. After enhancing
the RRG generator in VTR to support GIB architecture, the
placer leads to different placements. To isolate the delay
improvement without noise from changing placements, we
evaluate the GIB architecture with locking down the original
placements. Experimental results show that it can improve the
critical path delay by approximately 9.5% and the area-delay
product by 11.1% on average as shown in TABLE VII which
is almost the same as the improvement without locking down
the original placements. For these circuits whose
performances become worse, there exist some regions getting
congested which leads to longer critical path delay. In the
future, we can explore the placement and routing algorithms
in VTR to improve the performance of GIB architecture.

TABLE VII. RESULT OF GIB COMPARED WITH CB-SB BASELINE
ARCHITECTURE WITH LOCKING DOWN THE ORIGINAL PLACEMENTS

Area Critical Path Delay Area-Delay

Avg. improvement 1.8% 9.5% 11.1%

TABLE VIII. RESULT OF GIB COMPARED WITH CB-SB ARCHITECTURE
WITH WIRE SEGMENT S OF DIFFERENT LENGTHS

Length Area
Improvement

Critical Path Delay
Improvement

Area-Delay
Improvement

2 0.7% 3.3% 4.0%
3 2.4% 6.6% 8.8%
4 1.8% 9.5% 11.1%
6 1.0% 12.6% 13.5%

Fig. 14. The area-delay product improvement in GIB with different SB

patterns

9.5%

8.9%

8.3%

7.50%

8.00%

8.50%

9.00%

9.50%

10.00%

Wilton Subset Universal

cr
iti

ca
l p

at
h

de
la

y
im

pr
ov

em
en

t

180

E. The effect of wire length and SB pattern
To explore the effect of wire length on GIB architecture,

the single type of wire segments with different lengths are
used. To obtain accurate and convincing experimental results,
the timing and area parameters of wire segments and
multiplexers are extracted from COFFE 2. Besides, different
SB patterns are used to explore whether SB patterns influence
the performance of GIB architecture. We use four kinds of
wire segments with length- {2, 3, 4, 6}. Experimental results
show that the longer wire segments can achieve more
improvement as shown in TABLE VIII. The GIB architecture
with length-6 wire segments can improve critical path delay
by 12.6% and improve the area-delay product by 13.5% on
average compared to CB-SB architecture with length-6 wire
segments. Besides, we run the VTR flow with three different
SB patterns where the value of fs is set to 3. Experimental
results show that Wilton SB pattern can achieve the most
improvement on critical path delay in GIB architecture as
shown in Fig. 14. Especially, some circuits are unroutable
which contain arm_core, LU32PEEng, mcml, mkPktMerge in
Universal SB pattern which means Universal SB pattern is not
always suitable for GIB architecture.

V. CONCLUSION
In this paper, we propose a novel unidirectional routing

architecture for modern FPGAs. Compared with VTR CB-SB
architecture, GIB architecture with the equivalent fc and fs
values achieves 8.3% improvement on the critical path delay
and 9.9% improvement on the area-delay product on average
compared with CB-SB architecture. The optimized GIB
architecture with fc = (0.025 0.025 0.025 0.025) for input pins
and fc = (0.05 0.05 0.05 0.05) for output pins can improve the
critical path delay by approximately 9.5% and the area-delay
product by around 11% on average. Particularly for large
circuits with long critical path delay, it can improve by 13%
on the area-delay product. In future, we can run large circuits
like Titan benchmarks [28] and explore different wire
segments and bent wire pattern [20] to improve the GIB
architecture further.

 ACKNOWLEGEMENT
This work is supported in part by the National Science

Foundation of China under Grant No. 61971143.

REFERENCES
[1] T. Karnik and S.-M. Kang, “An empirical model for accurate

estimation of routing delay in FPGAs,” in Proceedings of the 1995
IEEE/ACM international conference on Computer-aided design. IEEE
Computer Society, 1995, pp. 328–331.

[2] M. Khellah et al., “Modelling routing delays in SRAM-based FPGAs,”
in Canadian Conference on VLSI. Citeseer, 1993, p. 6B.

[3] Eachempati, S. Nieuwoudt and A. Gayasen, “Assessing carbon
nanotube bundle interconnect for future FPGA architectures,” Design,
Automation & Test in Europe(DATE) Conference, 2007, 23 -32

[4] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[5] S. Wilton et al., Architecture and algorithms for Field-Programmable
Gate Arrays with embedded memory, PhD thesis, University of
Toronto, 1997.

[6] Y.-W. Chang et al., Universal switch blocks for FPGA design, ACM
Transactions Design Automation of Electronic Systems, vol. 1, No. 1,
pp. 80–101, 1996.

[7] G.F. Lemieux, S.D. Brown and D. Vranesic, "On Two-step Routing for
FPGAS," Proceedings of the International Symposium on Physical
Design (ISPD '97), pp. 60-66, April 1997.

[8] C. Zhou , R. Cheung, and Y. Wu, “What if merging connection and
switch boxes -- an experimental revisit on FPGA architectures,” IEEE
International Conference on Communications, Circuits and Systems,
2004, 1295 -1299

[9] K. Ma, L. Wang, X. Zhou, S. Tan and J. Tong, “General switch box
modeling and optimization for FPGA routing architectures,” IEEE
International Conference on Field-Programmable Technology (FPT),
2010, pp. 320–323.

[10] K. E. Murray et al., “VTR 8: High performance CAD and customizable
FPGA architecture modelling,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 13, no. 2, p. 9, 2020

[11] S. Yazdanshenas and V. Betz, “COFFE 2: Automatic modelling and
optimization of complex and heterogeneous FPGA architectures,”
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 1, p. 3, 2019.

[12] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 7, no. 2, p. 6, 2014.

[13] G. Lemieux et al., “Directional and single-driver wires in FPGA
interconnect,” IEEE International Conference on Field-Programmable
Technology (FPT), 2004, pp. 41–48.

[14] P. Jamieson, K. Kent, F. Gharibian, and L. Shannon. “Odin II-An
Open-Source Verilog HDL Synthesis Tool for CAD Research,” In
IEEE Annual Int’l Symp. on Field-Programmable Custom Computing
Machines, pp. 149–156. IEEE, 2010.

[15] A. Mishchenko et al. ABC: A System for Sequential Synthesis and
Verification. http://www.eecs.berkeley.edu/alanmi/abc, 2009.

[16] X. Tang, E. Giacomin, A. Alacchi and P. Gaillardon, “A study on
switch block patterns for tileable FPGA routing architectures,” IEEE
International Conference on Field-Programmable Technology (FPT),
2019, pp. 247–250.

[17] Virtex-5 Family Overview, Xilinx, DS100 (v5.1) August 21, 2015
[18] S. Sivaswamy et al., “HARP: hard-wired routing pattern FPGAs,” in

Proceedings of the 2005 ACM/SIGDA 13th international symposium
on Field-programmable gate arrays. ACM, 2005, pp. 21 29.

[19] G. Wang et al., “Statistical analysis and design of harp fpgas,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 10, pp. 2088 2102, 2006.

[20] X. Sun, H. Zhou and L. Wang, “Bent routing pattern for FPGA”, in
2019 29th International Conference on Field Programmable Logic and
Applications (FPL), 2019, pp. 9–16.

[21] P. B. Minev and V. S. Kukenska, “The Virtex-5 routing and logic
architecture,” Annual Journal of Electronics, Technical University of
Sofia, vol. 3, pp. 107–110, 2009.

[22] J. Chromczak et al., “Architectural Enhancements in Intel® Agilex™
FPGAs,” in Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2020, pp.
140–149.

[23] A. Roopchansingh and J. Rose, “Nearest neighbour interconnect
architecture in deep submicron FPGAs,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, 2002, pp. 59–62.

[24] C. Chiasson, “Optimization and modeling of FPGA circuitry in
advanced process technology,” Master’s thesis, University of Toronto,
2013.

[25] O. Petelin and V. Betz, “The speed of diversity: Exploring complex
FPGA routing topologies for the global metal layer,” 26th International
Conference on Field Programmable Logic and Applications (FPL),
IEEE, 2016, pp. 1–10.

[26] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” in Proceedings of the 2000 ACM/SIGDA 8th international
symposium on Field-programmable gate arrays. ACM, 2000, pp. 203–
213.

[27] K. E. Murray, S. Zhong and V. Betz, "AIR: A Fast but Lazy Timing-
Driven FPGA Router," 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), Beijing, China, 2020, pp. 338-
344

[28] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-driven
Titan: Enabling large benchmarks and exploring the gap between
academic and commercial CAD,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 8, no. 2 p. 10,
2015

181

