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Abstract—In the EDA process of FPGA, VTR (Verilog-to-
Routing) is a commonly used open-source CAD tool in the
academic community, and VPR (Versatile Place and Route) is
the back-end process of VIR. The packing algorithm in VPR is
a seed-based architecture-aware algorithm, which has strong
versatility. However, the packing density is low for CLB
architectures without local crossbar interconnect in the
commercial FPGAs, which results in long critical path delays in
circuits. To solve this problem, this paper optimizes the
packing algorithm in VPR by adding a virtual crossbar in CLB,
aiming to improve the internal utilization of each CLB and
decrease the critical path delay of the circuit. The experimental
result shows that it can reduce the average number of packed
CLBs by 56.51% and the average critical path delay by 9.14%
after the packing algorithm enhancement.
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[. INTRODUCTION

In the back-end process of the entire EDA flow for FPGA,
packing is the first stage, followed by placement and routing
[1]. A packer reads in an architecture file of the FPGA and a
netlist produced by logic synthesis. Then it assigns the netlist
blocks to proper configurable logic blocks (CLBs), before
entering the placement process.

There is a local crossbar interconnect [2] in each CLB,
which provides rich routing resource to connect signals from
CLB input pins to LUT input pins in the traditional FPGA
architecture in academia. However, the advantage is at the
cost of larger area, which is increasingly unbearable in
commercial FPGAs. Hence there are no crossbars in recent
commercial FPGAs [3]. As a consequence, the EDA
algorithm needs to be improved for the adaption to changes
in commercial FPGA architectures.

In this paper, a packing algorithm based on AAPack in
VPR is enhanced to improve the performance of the packer.
This paper is organized as follow: Section 2 briefly
introduces the background of AAPack algorithm and the
structure of crossbars in CLBs. Section 3 analyses the reason
why AAPack performs badly for CLBs without crossbars and
how to improve the algorithm. Section 4 gives the
experiment results. Section 5 concludes this paper.

II. BACKGROUND

In this section, we first briefly introduce AAPack
algorithm. Then the structure of the crossbar in CLB is
presented.

A. AAPack Algorithm

AAPack [4] is the packing algorithm in VPR where
inputs to the packer are a technology mapped netlist of
unpacked netlist blocks and a description file of FPGA
architecture. The output is a netlist of packed CLBs.

The first step of the algorithm is pre-packing [5], aiming
to group some netlist atoms that are not able to pack in

different clusters because of inflexibility in interconnect into
molecules. Secondly, a molecule is selected as a seed, and
then the packer creates a new cluster containing the seed
molecule. In the third step, it continuously finds a candidate
molecule according to an affinity function and attempts to
pack the molecule into the current cluster. This step
continues until the cluster is full or no more molecules can be
packed into it. Every time when this step is over, it means the
packing for current cluster is done and the packer jumps back
to the second step to establish a new cluster. The whole
process stops when all molecules are packed.

Attempting to pack a molecule into the current cluster in
the third step mainly consists of three parts: 1) it finds a
candidate location in the cluster for the molecule; 2) it checks
whether packing on the chosen position is feasible for routing
resource; 3) through the cluster’s interconnect, it routes the
molecule’s nets in the cluster. These parts are similar to
placement and routing process within a cluster.
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Fig. 1. (a) Structure of CLB with crossbar.[4] (b)Structure of CLB
without crossbar.[7]

B. Crossbar in CLB

In the traditional FPGAs, CLBs consist of N logic
elements (LEs) to implement diverse functions and each LE
has K input pins. The local connections within a cluster can
be presented as a crossbar. Each crossbar has [ cluster inputs,
2*N feedbacks of LEs as inputs and N*K outputs connected
to LE inputs, as shown in Fig. 1.(a) in which the value of I, N
and K is 40, 10 and 6 respectively. It provides abundant
routing resource in CLBs.

However, there are no crossbars in CLBs of some recent
commercial FPGA architectures, such as AMD/Xilinx
UltraScale [6] and Intel Stratix-10 [7]. It means the input pins
of CLBs are directly connected to LE input pins, and no
feedbacks exist inside the CLB. A simplified architecture is
illustrated in Fig. 1.(b). It will cause significant deterioration
in the packing results like low utilization within a CLB.



Hence, it is important to optimize the packing algorithm
targeting for the architecture without crossbars in CLBs.

III. PACKING ALGORITHM ENHANCEMENT

The AAPack in VPR can result in significantly different
packing results for CLBs without crossbars and CLBs with
crossbars. It is obvious that the number of CLBs in
architecture with crossbars is much less than that those
without crossbars as a result of packing.

We first analyze the reasons for the difference, then a
specific enhancement is proposed subsequently.

A. Analysis

Based on Section II-A, it can be found that it is almost
the same in choosing a seed molecule and candidate
molecules with or without crossbars. The difference occurs
when attempting to pack the molecule into the current cluster.
The three parts of this step are introduced briefly in Section
II, and the main difference happens in the second part. In
other words, after checking feasibility of the chosen positions,
more molecules are considered to be infeasible in the exact
position when there is no crossbar in CLBs compared to the
CLBs with crossbars. Most of these unpacked molecules
cannot be packed with others, so they are basically placed
separately in different clusters, which leads to the low
utilization inside each CLB.

A technique called pin counting is used to determine
whether a placement is feasible or not. Pins in a CLB are
divided into several classes as soon as the architecture file is
read and each class has a pin number. If the number of pins
required to be used is more than the number of practical pins
in the class, the placement of the molecule is considered to
be infeasible. The process of classification is influenced by
the specific architecture. The number of pins in every pin
class is smaller without crossbars in CLBs because of the
strict rule of pin classification, leading to more illegal
placements.

B. Enhancement

The classification rule in the pin counting is complex,
and modifying it may result in extra negative influence. So
adding a virtual crossbar in the CLB and reclassify pins is a
better method to enhance the packing algorithm for
architecture without crossbars.

After being read into VPR, the architecture file is
converted into a graph and stored in a data structure. As
Fig.1.(b) shows, an input pin of a CLB has only one edge
connected to it if there is no crossbar, and this exact edge
merely connects one input pin of an LE. No feedback
connections are available in this situation.

The virtual crossbar is added before the feasibility
checking stage. After positioning the molecule, if there is no
crossbar in the data structure, we create new edges from all
input pins of the CLB to all input pins of LEs in it. Besides,
the feedbacks need to be added as well in the same way, by
building new edges from all output pins to all input pins of
LEs. Lastly, these new-built edges are bound to the
corresponding pins data structures.

As soon as the virtual crossbar is added, the function of
pin classification is called again to reclassify the pins in the
CLB, and the number of pins in some pin classes increases

so that many molecules can pass the feasibility checking in a
relatively loose classification.

Some routing problems also need to be taken into
consideration. The routing inside a cluster is supported by
the routing resource graph (RRG) representing the internal
connections of a CLB. A node in the routing graph
represents a pin on the physical block and directed edges
between nodes corresponds to the paths through CLB
interconnects. The part of RRG generated from a CLB with
the crossbar shown in Fig. 1.(a) is illustrated in Fig. 2, and
the dash-dotted lines in the figure means the feedback nets.
This step aims to find a feasible path from a source pin to the
sink pin correspondingly on the RRG. A cluster is packed
denser by the virtual crossbar. However, there is no enough
internal routing resource to implement some netlist
connections like feedback nets. So the feedback routing path
should be moved outside the cluster and be implemented by
interconnect nets between CLBs in the general routing stage.
The packing algorithm does not need to be modified because
the RRG generated by AAPack allows any CLB output pin
to connect to any other input pin in the same CLB as the
dashed line shown in Fig. 2. As a consequence, the router in
clusters can find a path for feedback connections in the RRG
though there are no feedback nets inside.
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Fig. 2. Part of RRG generated from the CLB in Fig. 1.(a)

IV. EXPERIMENTAL RESULTS

The complete flow of attempting to pack a molecule into
a cluster is shown in Fig. 3. The experiment focuses on two
results: 1) the number of CLBs after packing and 2) the
critical path delay after the entire VPR flow. Twenty-one
VPR benchmark designs and twenty Koios benchmark
designs [8] are used for evaluation. The Odin II+ABC flow
is first run to obtain the BLIF files, which are the input files
to VPR. The architecture file is a 40nm CMOS architecture



in VTR, k6_frac N10_mem32K 40nm.xml [9], which has a
crossbar and ten 6-input LEs in each CLB. Its internal
structure of a CLB is briefly shown in Fig. 1.(a). The
crossbar in this architecture is deleted to test the optimized
algorithm. The original 40 input pins are not enough in this
situation, so 20 inputs are added, implying that total 60
inputs of CLB directly one-to-one connect to 60 LE input
pins. The routing channel width is set to 300 which is
common in the previous work [10] [8].
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Fig. 3. Complete flow chart of packing a molecule into a cluster

The results are shown in TABLE 1. It can be seen that the
number of CLBs after packing in architecture without
crossbars is large, which leads to long critical path delay.

Data in the column labeled as “-A4” is calculated by the
difference between the result of optimized VPR and baseline
VPR without crossbar divided by the former number,
representing for the reduced proportion of the number of
CLBs, the critical path delay, total area and maximum
routing channel utilization. It can be seen that after
optimizing the packing algorithm, the number of CLBs and
the critical path delay has a reduction of 53% and 9.14%
respectively, compared to baseline VPR.

The optimization comes from the improvement of the
packing algorithm. The new-added virtual crossbar loosen
the pin classification. As a consequence, more molecules can

pass the feasibility checking and then be packed into the
current cluster when the packer tries to fill it. This
contributes to dense clusters, in other words, the number of
packed CLBs decreases. Naturally, total area has a reduction
of 34.81% on average.

A drawback of the enhancement is nonnegligible.
Because of high density in clusters and lack of internal
routing resource of CLBs without crossbars, many
connections need to be implemented by global routing wires
between CLBs. This will increase routing channel utilization
by 31.92% on average as shown in the last column of
TABLE I, which means higher chance to be congested and to
fail in routing stage.

V. CONCLUSION

In this paper, an enhancement for packing algorithm in
FPGA back-end flow is developed, aiming to improve
packing results for FPGA architecture without crossbars.
This optimized packer can make every cluster denser and
experimental results show that the number of CLBs after
packing has a reduction of 53% on average compared to the
baseline algorithm. Meanwhile, the critical path delay after
the entire VPR flow reduces by 9.13%, which is a
considerable improvement. As most of commercial FPGAs
have no crossbars, this research can bring significant gain for
recent commercial architectures.

REFERENCES

[1] V. Betz, J. Rose, A. Marquardt, “Architecture and CAD for deep-
submicron FPGAs.” Kluwer Academic Publishers Norwell, MA, USA,
1999, pp.18-26.

[2] G. Lemieux, "Using sparse crossbars within LUT." International
Symposium on Field Programmable Gate Arrays, 2001, pp.59-68.

[3] B. Gaide, D. Gaitonde, C. Ravishankar and T. Bauer, "Xilinx
Adaptive Compute Acceleration Platform: Versal (TM) Architecture",
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 108-116, 2015.

[4] J. Luu, J. Rose, and J. Anderson, “Architecture Description and
Packing for Logic Blocks with Hierarchy, Modes and Complex
Interconnect.”Annual ACM International Symposium on Field-
Programmable Gate Arrays, 2011, pp.227-236.

[5] J. Luu, J. Rose, and J. Anderson, “Towards Interconnect-Adaptive
Packing for FPGAs.” Annual ACM International Symposium on
Field-Programmable Gate Arrays, 2014, pp.21-30.

[6] Xilinx Corporation, “Versal ACAP Configurable Logic Block
Architecture Manual.” 2023.

[7] Intel® Stratix® 10 FPGAs and SoC FPGAs Support, “Programming,
Reference & Implementation Guides for Developers.” 2018.

[8] A. Arora et al, “Koios: A Deep Learning Benchmark Suite for FPGA
Architecture and CAD Research.” 31st International Conference on
Field Programmable Logic and Applications (FPL), 2021, pp.355—
362.

[9] J.Luu, J. Goeders, V.Betz.
http://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/maste
r/vtr_flow/arch/timing/k6_frac N10_mem32K_40nm.xml

[10] K. Shi, X. Zhou, H. Zhou, L. Wang, “An Optimized GIB Routing
Architecture with Bent Wires for FPGA.” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 2022, pp.1-28.

[11] K. Shi, H. Zhou, L. Wang, “A Hexagon-Based Honeycomb Routing
Architecture for FPGA.” 20th International Conference on Field-
Programmable Technology (ICFPT), 2021, pp.179-184


http://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/arch/timing/k6_frac_N10_mem32K_40nm.xml
http://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/arch/timing/k6_frac_N10_mem32K_40nm.xml

TABLE L EXPERIMENTAL RESULTS
Number of CLBs Critical Path Delay/ns Total Area/(10°8) Ma"im“'l‘j tﬁl"z‘;‘l‘(‘ﬁ Channel
Benchmark Baseline | Optimized A Baseline | Optimized A Baselin | Optimized A Baseline | Optimized A
VPR VPR VPR VPR e VPR VPR VPR VPR
VTR Benchmarks

arm_core 3220 959 70.22% 23.94 20.96 12.45% 3.70 1.11 70.09% 0.63 0.83 -31.75%
bgm 10548 2504 76.26% 24.78 20.00 19.29% | 11.92 291 75.60% 0.61 0.7 -14.75%
blob_merge 1975 577 70.78% 14.28 13.23 7.40% 2.28 0.66 71.19% 0.47 0.66 -40.43%

boundtop 85 82 3.53% 1.99 2.08 -4.75% 0.09 0.09 0.00% 0.26 0.26 -0.00%
ch_intrinsics 72 65 9.72% 291 2.76 5.04% 0.09 0.08 15.36% 0.17 0.25 -47.06%
diffeql 159 36 77.36% 24.51 24.19 1.34% 0.18 0.16 10.72% 0.28 0.52 -85.71%
diffeq2 108 29 73.15% 19.53 19.74 -1.07% 0.21 0.21 0.00% 0.23 0.49 -113.04%
LUSPEEng 6980 1979 71.65% | 119.21 100.24 15.92% 8.00 2.28 71.41% 0.58 0.73 -25.86%
LU32PEEng 25227 6959 72.41% | 111.58 99.04 11.24% | 28.66 7.96 72.21% 0.7 0.83 -18.57%
meml 13438 5449 59.45% | 102.59 92.56 9.78% 15.38 6.88 55.31% 0.54 0.72 -33.33%
mkDelayWorker32B 458 459 -0.22% 8.37 8.00 4.48% 1.97 1.97 0.00% 0.19 0.21 -10.53%
mkPktMerge 29 24 17.24% 3.94 4.05 -2.87% 0.57 0.57 0.00% 0.17 0.19 -11.76%
mkSMAdapter4B 346 166 52.02% 6.76 6.15 9.08% 0.40 0.28 30.99% 0.37 0.63 -70.27%
or1200 873 250 71.36% 20.93 19.86 5.13% 1.01 0.53 47.83% 0.5 0.69 -38.00%

raygentop 207 104 49.76% 6.42 5.98 6.88% 0.34 0.34 0.00% 0.52 0.57 -9.62%
sha 1359 209 84.62% 16.12 16.09 0.18% 1.56 0.24 84.82% 0.44 0.59 -34.09%

spree 170 66 61.18% 13.18 12.59 4.49% 0.21 0.13 41.58% 0.59 0.62 -5.08%
stereovisionQ 1101 743 32.52% 4.30 4.28 0.35% 1.27 0.87 31.74% 0.49 0.56 -14.29%
stereovisionl 1430 760 46.85% 5.77 5.49 4.74% 1.64 1.22 25.52% 0.53 0.66 -24.53%
stereovision2 6659 2288 65.64% 21.31 20.26 4.90% 8.83 8.83 0.00% 0.51 0.66 -29.41%

stereovision3 34 13 61.76% 3.18 2.90 8.82% 0.04 0.02 56.94% 0.23 0.24 -4.35%

Koios Benchmarks

attention_layer 5059 1491 70.53% 12.49 10.36 17.05% 5.78 3.70 35.96% 0.52 0.71 -36.54%
bnn 24626 7861 68.08% 14.58 13.66 6.36% 28.06 8.96 68.06% 0.59 0.84 -42.37%
conv_layer 2909 1410 51.53% 11.92 10.99 7.82% 3.34 2.48 25.69% 0.57 0.76 -33.33%
conv_layer hls 2874 1873 34.83% 11.99 11.94 0.43% 9.17 9.17 0.00% 0.47 0.65 -38.30%
eltwise_layer 2212 1024 53.711% 6.18 532 13.92% 2.83 2.83 0.00% 0.56 0.77 -37.50%
gemm_layer 69810 22398 67.92% 23.15 14.85 35.87% | 78.75 25.26 67.93% 0.63 0.88 -39.68%
Istm 16830 5981 64.46% 15.29 12.96 15.25% | 19.29 9.17 52.48% 0.56 0.87 -55.36%
reduction_layer 4426 967 78.15% 8.95 7.01 21.67% 4.98 1.50 69.84% 0.41 0.78 -90.24%
robot 1l 5711 1434 74.89% 15.57 14.50 6.90% 6.54 1.97 69.96% 0.55 0.72 -30.91%
softmax 4247 1410 66.80% 10.54 7.81 25.88% 4.87 1.64 66.36% 0.54 0.62 -14.81%
spmv 1631 771 52.73% 7.12 6.38 10.41% 8.13 8.13 0.00% 0.44 0.64 -45.45%
clstm_like.small 25302 10178 59.77% 16.63 11.14 33.01% | 28.66 11.55 59.68% 0.58 0.75 -29.31%
clstm_like.medium 49585 19374 60.93% 16.77 13.17 21.43% | 5591 21.87 60.88% 0.61 0.8 -31.15%
clstm_like.large 74143 28557 61.48% 20.61 15.20 26.22% | 84.04 32.52 61.30% 0.58 0.83 -43.10%
dla_like.small 14310 6569 54.10% 14.68 14.63 0.37% 18.04 18.04 0.00% 0.68 0.74 -8.82%
dla_like.medium 33554 16096 52.03% 17.59 17.10 2.78% 38.11 27.50 27.85% 0.65 0.75 -15.38%
tiny darknet like.small 9794 4924 49.72% 19.16 19.87 -3.69% | 92.42 92.42 0.00% 0.54 0.59 -9.26%
tiny_darknet like.medium 39537 16310 58.75% 18.43 18.30 0.69% ! 111'1 111.11 0.00% 0.62 0.69 -11.29%
tpu_like.small 4639 1676 63.87% 8.11 7.80 3.79% 7.46 7.46 0.00% 0.52 0.61 -17.31%
tpu_like.medium 10850 5934 | 4531% | 14.08 13.25 5.88% | 29.96 | 29.96 0.00% | 0.62 0.72 -16.13%
Average 56.51% 9.14% 34.81% -31.92%
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