
Efficient FPGA Routing Architecture Exploration
Based on Two-Stage MUXes

Jide Zhang, Kaixiang Zhu, Kaichuang Shi, Lingli Wang∗, Hao Zhou
State Key Laboratory of ASIC and System

Fudan University, Shanghai, China
∗Corresponding Author’s Email: llwang@fudan.edu.cn

Abstract—Employing large routing multiplexers (MUXes) in
FPGA results in significant area and delay overheads. Hence, the
two-stage cascaded structure with small MUXes can reduce the
area and delay effectively. However, the manual design of a two-
stage MUX topology is challenging to find optimal architecture.
An automatic switch pattern exploration framework is proposed
based on a novel routing architecture, TSRB (Two-Stage MUX
Routing Block), which consists of two-stage MUXes in switch
box (SB) and local interconnection block (LIB). The framework
can enable the router to select commonly used switches based
on the usage of switch connections under the premise of solving
congestion, leading to a minimal set of switch types used in the
architecture. The TSRB switch pattern is generated aided by
a pre-exploration method to avoid manual design. The pattern
optimization is then followed by two-stage MUX exploration. Our
exploration framework can generate a TSRB switch pattern and
optimize the pattern by pruning more than half of the switch
connections, achieving an average 7% shorter critical path delay
with a 5% area reduction compared to the one-stage large MUX
routing architecture.

I. BACKGROUND AND RELATED WORKS

FPGA routing architecture design is always challenging
since it significantly affects the area and delay. For the
traditional island-FPGA [1], the routing architecture mainly
includes global routing wires, switch box (SB) and local
interconnection block (LIB), which consists of the connection
box (CB) and the crossbar inside the cluster logic block (CLB).
Recent studies [2] [3] implement large MUX in FPGA routing
architecture, effectively improving routability. However, area
and delay increase linearly with the MUX size, making the
MUX topology design of FPGA require a trade-off between
routability and area delay consumption.

To avoid the area and delay overheads of large MUX with-
out affecting routability, two-stage MUX routing architecture
is proposed in [4]. This manually designed two-stage MUX
topology has a significant delay advantage over large MUX
with a small cost of area. However, the challenge of designing
a two-stage MUX topology lies in the design of the switch
pattern. The manual design method and artificially imposed
constraints limit the two-stage MUX design space, making it
difficult to find an optimal architecture.

The automatic switch-block exploration method proposed in
[5], abbreviated as avalanche, can select a minimum set of
switch types through a series of VPR routing experiments.

This work is supported by the National Natural Science Foundation of
China under grant 61971143.

It allows the router to explore the design space without
constraints. The router can select the switch connections with
modified avalanche cost during the routing. The more fre-
quently used switch connections have a lower avalanche cost
so that they are more likely selected as the fixed switch pattern,
leading to the minimum set of switch types under the premise
of eliminating congestion. However, that paper only explores
the SB pattern without covering the CB and crossbar.

Inspired by avalanche, two-stage MUX topology can also
be designed by automatic exploration. The contributions of
this paper are as follows:

• The TSRB architecture proposed in this paper utilizes
two-stage MUXes to replace large MUXes in both the
SB and LIB. The two-stage MUXes in the SB and LIB
are divided into multiple groups, and the interconnections
only exist within the group, which optimizes the routing
area and delay effects.

• An automatic TSRB exploration framework is proposed
based on avalanche. To avoid designing a two-stage
MUX topology manually, a pre-exploration method is
proposed to select a set of switch types in one-stage MUX
avalanche, which are used for TSRB generation. Then
two-stage MUX exploration is followed for TSRB pattern
optimization.

• Compared with the one-stage MUX architecture, the opti-
mized TSRB architecture can achieve a 5.21% reduction
in area and an average 7.7% decrease in critical path delay
with the proposed exploration framework, which can
provide new insights for the two-stage MUX automatic
design.

II. TSRB ARCHITECTURE INTRODUCTION

Fig.1 describes a two-stage MUX topology of SB/LIB. The
first stage MUX (FSM) accepts inputs from global wires and
CLB outputs and drives the second stage MUX (SSM) via a
crossbar, which can be either fully or custom connected. The
SSM receives inputs from FSM and drives either the global
wires (SB) or directly connects to LUT input pins (LIB).

Notably, not all FSMs are connected to all SSMs but are
divided into several groups called Sub-SBs or Sub-LIBs. The
FSMs within each group only connect to the SSMs within
that group, reducing the complexity of the crossbar between
the two stages of MUXes.



Sub-SB/Sub-LIB

Crossbar

Sub-SB/Sub-LIBSub-SB/Sub-LIB

FSM SSM
SB/LIB

Fig. 1: Two-stage MUX topology

III. EXTENDED AVALANCHE EXPLORATION

Avalanche in [5] generates a routing resource graph
(RRG) with full connectivity among global routing wires.
These switches are called candidate connections, each with
an avalanche cost. The router freely chooses the path
and candidate connections during the routing iteration. The
avalanche cost of candidate connections can be adjusted
based on their usage after each routing iteration. This negotia-
tion mechanism cooperates with congestion negotiation [6],
leading the router to select commonly used switch types while
eliminating congestion. After each iteration, the candidate
connections with high usage can be selected into a fixed switch
pattern. The exploration iteration ends when the router can
route all nets successfully with no candidate connections.

To conduct TSRB exploration, we make a series of exten-
sions based on avalanche, as outlined below:

1) Larger Design Space Exploration: The work in [5]
only optimizes the switch pattern in the SB, but the local
interconnections can also be optimized. The framework for
SB and LIB exploration is constructed, which supports more
extensive design space exploration.

2) Delay Modeling: HSPICE is adopted to measure the
delay of two-stage MUX topology. We fix the transistor sizes
and assume that every circuit block(e.g. a MUX, a CLB, etc.)
is a square with an area equal to the sum of all circuit element
areas within the block and the length of wire across the block
is equal to the width of that block.

3) Multi-Threading Exploration: Multiple circuits are
merged on a single FPGA to explore the switch pattern in [5].
However, the larger exploration space of TSRB leads to an
even greater complexity of routing resources, which causes a
long routing time. Therefore, the framework routes test circuits
separately with multiple threads and combines the candidate
connection usages at the end of each iteration, reducing the
iteration time significantly.

IV. TSRB GENERATION AND EXPLORATION

Fig.2 shows the design framework for TSRB generation and
exploration. We define a candidate connection from in element
(wire or pin) to out element as cc(in, out). Pre-exploration of
one-stage MUX avalanche is used to select a set of switch
types, {cc(in, out)}, which is used to generate the TSRB
switch pattern. The TSRB pattern is further optimized by two-
stage MUX avalanche. VPR [7] is used to analyze the usage
of candidate connections. Based on the VPR experiment, the

framework selects eligible candidate connections, generates
a new architecture file and RRG, and starts a new iterative
exploration.

VPR arch &
 RRG

Circuits

Pack

Place

Route

Analyze
Switch
Usage

VPR

Usage

Pre-exploration

TSRB Switch
Pattern

Generation

TSRB Switch
Pattern

Exploration

TSRB Design Framework

Fig. 2: TSRB exploration framework

A. TSRB pre-exploration

Designing a two-stage MUX topology unrestrictedly is
too general for analysis. Pre-exploration is proposed, which
uses avalanche based on a fully-connected one-stage MUX
architecture, which contains all possible switch types that may
be used. Pre-exploration is discontinued at a specific itera-
tion considering runtime and a set of candidate connections,
{cc(in, out)}, is obtained for designing a two-stage MUX
topology.

After several one-stage MUX avalanche iterations, we
choose the candidate connections selected into the fixed pat-
tern or used in the discontinued iteration to design the TSRB
switch pattern, and their fan-in weights formulas are shown in
the table. I. In the formula, usage, max usage means the can-
didate connection usage and maximum usage in discontinued
iteration. The cc1 is the most important, with the weight set to
1. The weight represents the dependent relationship between
in and out within the candidate connections, which produces
an effect in generating the TSRB switch pattern.

TABLE I: Candidate connections in pre-exploration

Type Description Weight
cc1 Been selected into fixed pattern 1

cc2
Been used in discontinued iteration but have not
been selected usage/max usage

B. TSRB Generation and Exploration

The TSRB switch pattern generation method is pro-
posed and illustrated in Algorithm 1. The output band-
width of each group—OB, the maximum size of FSM—
FSMmax are required to specify. Based on the {cc(in, out)}



obtained in pre-exploration and these two parameters,
the algorithm 1 generates the TSRB switch pattern,
{cc(in,medium), (medium, out)}, where medium means
medium node between two stages of MUXes or output of
FSM. Grouping out elements that contain the most common
in elements can effectively limit the total number of fan-ins
within the group and save FSM resources. After grouping out
elements, all in elements and their weights are obtained within
a group. Then the in elements are distributed into FSMs in
turn. The algorithm iterates over all existing FSMs within the
group that have not reached the maximum size, compares the
cost of inserting the in element to the eligible FSMs with
creating a new FSM, and finally generates the least costly
connection. The FSM cost function is shown in Formula 1,
which is related to the number of existing FSMs, FSM num,
the minimum size of the existing FSMs, min size and the
sum of in element weights. The cost function tends to create
new FSM at the beginning of allocation as it helps to create
adequate FSMs to increase input bandwidth. However, as
more in elements are inserted, the number of FSMs tends
to stabilize, and the function favors allocating in elements to
existing FSMs. A fully populated crossbar connects the two
stages of MUXes since there are only several SSMs in each
group.

costFSM =

{
eFSM num−min size2 , new FSM

sumweight, existing FSM
(1)

Algorithm 1 TSRB Generation

Input: Usagepre , OB , FSMmax

Output: FSMs, TSRB pattern
1: FSMs = {}, TSRB pattern = {};
2: Get cc(in, out) and assign weights from Usagepre;
3: Groups = making Groups(OB);
4: for Each group do
5: calculate in element weights
6: for Each in element within the group do
7: min cost, min cost mux=find mux(FSMmax);
8: new mux cost = new mux cost();
9: if min cost > new mux cost then

10: min cost mux = build new mux();
11: end if
12: insert in element to mux(min cost mux,weight);
13: cc = generate cc(in,min cost mux);
14: FSMs, TSRB pattern = update info();
15: end for
16: end for
17: return FSMs, TSRB pattern;

TSRB pattern exploration is conducted after switch pattern
generation, which can bring TSRB sparser connectivity and
introduce less load for routing wires.

V. EXPERIMENTAL RESULTS

A. FPGA Architecture

The baseline parameters used to compare with TSRB are
shown in the table. II. Eight 6-input non-fracturable LUTs
are included within CLB, and the crossbar is 50% populated.
Uni-directional, multiple wire types are utilized in TSRB
architecture. The length of routing wires is set to 1,2,4,6 with
a proportion of 1:1:1:1, and the channel width is fixed to 160
[8]. For baseline large MUX topology, each wire is required to
drive at least one wire of each type (length and direction) and
to be driven by at least one wire of each type, except wires
that come from the direction of the driving wire.

TABLE II: FPGA architecture parameters

Paramemter Value
Logic Block Eight 6-input Non-fracturable LUTs
CLB Input Crossbar 50% populated
DSP Block 36*36Fracturable Multipliers
Memory Block 32Kb Block RAMs
Segment Type 1, 2, 4, 6
Segment Proportion 1:1:1:1
Channel Width 160

B. Experiment Setup

Alu4, misex3, ch intrinsics and diffeq2 are employed
as the test circuits for automatic exploration. Delay modeling
is based on the 22nm PTM model [9]. OBSB and OBLIB are
set to 6 and 8, respectively while FSMmax is set to 8, which
are referred to [4]. Since our focus is routing architecture, the
logic block delays are from k6 N8 gate boost 0.2V 22nm
architecture distributed with VTR 8.0 [7].

C. Pre-exploration

A fully-connected one-stage MUX architecture is generated
for pre-exploration, which consists of 21,216 candidate con-
nections. The pre-exploration is set to end after 30 iterations.
There are 247, 5,817 candidate connections of cc1, cc2,
respectively, which together accounted for 28.5% of the total.

D. TSRB Generation and Exploration

TSRB switch pattern is generated based on pre-exploration
and algorithm 1, which contains 95 IB-FSMs, 197 SB-FSMs
and 4012 candidate connections. TSRB switch pattern ex-
ploration is conducted to optimize two-stage MUX topology
further. After 133 iterations, the optimized TSRB pattern is
obtained, including 207 FSMs and 1,872 candidate connec-
tions, accounting for 70.89% of the FSMs and 46.66% of the
total candidate connections, respectively. The detailed data is
shown in Fig.3. It proves that TSRB exploration effectively
prunes candidate connections related to SB; even 28% SB-
FSMs that have never been used are pruned, reducing tile area.
In contrast, candidate connections related to LIB are pruned
by 12%, with only 1% of LIB-FSMs pruned. It indicates that
the connection relationship in LIB is hard to prune, which is
consistent with expectations.



Fig. 3: Results of TSRB switch pattern exploration.

A comparison of MUX delays between optimized TSRB
and baseline is shown in Fig.4. The delay across two-stage
MUXes is better than a single large MUX delay. It also can
be observed that the longer the wire length, the better the
optimization of delay, which is reasonable due to wire loads.

Fig. 4: The comparison of MUX delays between optimized
TSRB and baseline.

Table.III compares the optimized TSRB architecture and
baseline in terms of tile area and critical path delay on VTR
benchmarks. An average 7.70% improvement in critical path
delay with a 5.21% reduction in tile area can be achieved. The
experiment results prove that our automatic exploration frame-
work can effectively generate, and optimize the TSRB switch
pattern and the optimized TSRB architecture can achieve good
area and delay optimizations without affecting routability.

VI. CONCLUSION

This paper proposes a novel TSRB architecture using an
automatic switch pattern exploration framework. The TSRB
switch pattern is generated aided by pre-exploration, and
TSRB pattern exploration is performed for further optimiza-
tion. The exploration framework can prune more than half
of the candidate connections. The optimized TSRB obtains
an average 7.7% critical path delay improvement with 5.2%
area reduction. However, the exploration framework only
supports the routing wires without switchpoints, resulting in
the inability to compare with the existing two-stage MUX
architecture in [4]. Our future work will further improve the

TABLE III: Comparison of optimized TSRB and baseline

Tile Area(um2)
TSRB Baseline Ratio(%)
426.93 449.17 -5.21

Benchmark
Critical Path Delay(ns)

TSRB Baseline Ratio(%)

arm core 14.9624 17.1509 -12.76
blob merge 6.33072 7.1648 -11.64

bgm 14.7179 16.3911 -10.21
boundtop 1.52871 1.84177 -17.00

ch intrinsics 1.94491 2.43777 -20.22
diffeq1 18.7879 20.8397 -9.85
diffeq2 14.422 15.5853 -7.46

LU8PEEng 67.4494 75.1254 -10.22
LU32PEEng 67.8522 69.3052 -2.10

mcml 59.4959 61.9227 -3.92
mkDelayWorker 9.21438 9.24904 -0.37

mkPktMerge 4.33836 4.54874 -4.63
mkSMAdapter4B 4.27376 4.70139 -9.10

or1200 11.4957 11.6071 -0.96
raygentop 4.64625 5.1368 -9.55

stereovision0 3.59072 3.45334 3.98
stereovision1 5.74508 5.74066 0.08
stereovision2 15.7157 18.7217 -16.06
stereovision3 1.65728 1.71909 -3.60

Average -7.70

framework to support different FPGA architectures for more
convincing comparisons.

REFERENCES

[1] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-
submicron FPGAs, vol. 497. Springer Science & Business Media, 2012.

[2] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa,
V. Manohararajah, I. Milton, T. Vanderhoek, and J. Van Dyken, “The
stratix™ 10 highly pipelined FPGA architecture,” in Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 159–168, 2016.

[3] Xilinx, “Ultrascale architecture and product overview,” 2015.
[4] Y. Shen, J. Qian, K. Shi, L. Wang, and H. Zhou, “Two-level MUX

design and exploration in FPGA routing architecture,” in 2021 31st
International Conference on Field-Programmable Logic and Applications
(FPL), pp. 234–241, IEEE, 2021.

[5] S. Nikolić and P. Ienne, “Turning PathFinder upside-down: Exploring
FPGA switch-blocks by negotiating switch presence,” in 2021 31st
International Conference on Field-Programmable Logic and Applications
(FPL), pp. 225–233, IEEE, 2021.

[6] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs, 1995,” Google Scholar Google
Scholar Digital Library Digital Library.

[7] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. Walker, et al., “VTR 8:
High-performance CAD and customizable FPGA architecture modelling,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 13, no. 2, pp. 1–55, 2020.

[8] J. Chromczak, M. Wheeler, C. Chiasson, D. How, M. Langhammer,
T. Vanderhoek, G. Zgheib, and I. Ganusov, “Architectural enhancements
in intel® agilex™ FPGAs,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 140–
149, 2020.

[9] PTM, “PTM - predictive technology model.” https://ptm.asu.edu/, 2018.

https://ptm.asu.edu/

	background and related works
	TSRB architecture Introduction
	Extended Avalanche exploration
	Larger Design Space Exploration
	Delay Modeling
	Multi-Threading Exploration


	TSRB generation and exploration
	TSRB pre-exploration
	TSRB Generation and Exploration

	Experimental Results
	FPGA Architecture
	Experiment Setup
	Pre-exploration
	TSRB Generation and Exploration

	Conclusion
	References

